期刊文献+
共找到4,428篇文章
< 1 2 222 >
每页显示 20 50 100
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
1
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
下载PDF
Stochastic Analysis and Modeling of Velocity Observations in Turbulent Flows
2
作者 Evangelos Rozos Jorge Leandro Demetris Koutsoyiannis 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期45-56,共12页
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i... Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment. 展开更多
关键词 Smart modeling turbulent flows Data analysis Stochastic analysis Image velocimetry
下载PDF
Artificial neural network-based one-equation model for simulation of laminar-turbulent transitional flow 被引量:1
3
作者 Lei Wu Bing Cui Zuoli Xiao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期50-57,共8页
A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equa... A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras(SA)-γmodel.By taking SA-γmodel as the benchmark,the present ANN model is trained at two airfoils with various angles of attack,Mach numbers and Reynolds numbers,and tested with unseen airfoils in different flow states.The a posteriori tests manifest that the mean pressure coefficient,skin friction coefficient,size of laminar separation bubble,mean streamwise velocity,Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA-γmodel.Furthermore,the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA-γmodel. 展开更多
关键词 TRANSITION turbulence Eddy-viscosity model Artificial neural network Intermittency factor
下载PDF
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow 被引量:1
4
作者 Qingjia Meng Zhou Jiang Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
下载PDF
Numerical simulation of gas–liquid flow in the bubble column using Wray–Agarwal turbulence model coupled with population balance model 被引量:1
5
作者 Hongwei Liang Wenling Li +3 位作者 Zisheng Feng Jianming Chen Guangwen Chu Yang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期205-223,共19页
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)... In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors.. 展开更多
关键词 CFD–PBM Wray–Agarwal turbulence model Gas–liquid flow Bubble column Interfacial force Wall lubrication force
下载PDF
Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model
6
作者 Hongyu Mu Yinyan Wang +7 位作者 Chuanlei Yang Hong Teng Xingtian Zhao Hongquan Lu Dechun Wang Shiyang Hao Xiaolong Zhang Yan Jin 《Energy Engineering》 EI 2023年第10期2325-2342,共18页
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us... New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine. 展开更多
关键词 New energy vehicle new energy vehicle engine k-ε turbulent flow mathematical model cooling system PID control
下载PDF
Numerical prediction of inner turbulent flow in conical diffuser by using a new five-point scheme and DLR k-ε turbulence model 被引量:2
7
作者 蒋光彪 何永森 +1 位作者 舒适 肖映雄 《Journal of Central South University》 SCIE EI CAS 2008年第S1期181-186,共6页
The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod... The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved. 展开更多
关键词 conical DIFFUSER turbulent flow DLR k-ε turbulence model 5-point scheme ALGEBRAIC MULTIGRID method(AMG)
下载PDF
Numerical Evaluation of Two k-εTurbulence Model for Predicting Flow and Solidification in Continuous Casting Slab 被引量:2
8
作者 LIU He-ping GAN Yong QIU Sheng-tao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2003年第2期10-16,共7页
A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-por... A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-porosity technique was used to represent the solidification,and Darcy law was adopted to simulate the flow in mushy region.The prediction for steel flow and solidification was evaluated by the comparison of two turbulence models.It is found that both Lam-Bremhorst low-Reynolds-number and high-Reynolds-number k-ε models predict the same trend of the steel flow and temperature distribution.However,due to the effect of turbulent flow on heat transfer,the low-Reynolds-number turbulence model predicts longer penetration depth of molten steel in sub-mold region,less shell growth and higher shell surface temperature at the narrow face compared with standard k-ε model. 展开更多
关键词 continuous slab caster SOLIDIFICATION steel flow turbulence model numerical simulation
下载PDF
REVISED k-ε TURBULENCE MODEL IN ELECTROMAGNETIC CONTINUOUS CASTING OF MELT 被引量:1
9
作者 H.F. Huo and B.K. LiDepartment of Thermal Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第5期395-400,共6页
The research is motivated by the ongoing the electromagnetic continuous casting of molten metal. The revised k-ε model considering the effect of magnetic field application was derived. The specific model equations fo... The research is motivated by the ongoing the electromagnetic continuous casting of molten metal. The revised k-ε model considering the effect of magnetic field application was derived. The specific model equations for the electromagnetic braking were used to calculate the velocity distribution in the continuous casting mold of steel. The results show that the revised k-ε model considering the effect of magnetic field application tends to suppress the production of turbulence and difference between the conventional and revised k-e model is small. 展开更多
关键词 revised k-ε turbulence model electromagnetic continuous casting magnetic field
下载PDF
A K-εTWO-EQUATION TURBULENCE MODEL FOR THE SOLID-LIQUID TWO-PHASE FLOWS  被引量:1
10
作者 刘小兵 程良骏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第6期523-531,共9页
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carr... A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and εequations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model. 展开更多
关键词 solid-liqtlid two-phase. k-εtwo-equation turbulence model
下载PDF
Numerical analysis of turbulent mixed convection air flow in inclined plane channel with k-εtype turbulence model 被引量:1
11
作者 XIE Zhengrui YANG Yanhua GU Hanyang CHENG Xu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2008年第2期121-128,共8页
Numerical study on turbulent mixed convection in inclined plane channels,from 15° to 90° (vertical),was carried out to examine the effect of inclination on fluid flow and heat transfer distributions.The turb... Numerical study on turbulent mixed convection in inclined plane channels,from 15° to 90° (vertical),was carried out to examine the effect of inclination on fluid flow and heat transfer distributions.The turbulent air flows upward or downward into the duct with one wall heated from bottom.Calculation results with several kinds of k-εtype turbulence models were used to compare the experimental data with those in literatures to determine suitable model.The dependents of Nusselt number on the inclination angle of both the buoyancy-aided and buoyancy-opposed flow are discussed. 展开更多
关键词 混合对流 k-ε模型 湍流模型 主测线渠道
下载PDF
An assessment of k-εturbulence models for gas distribution analysis 被引量:1
12
作者 Muhammad Saeed Ji-Yang Yu +2 位作者 Aniseh Ahmed Atef AbdaUa Xian-Ping Zhong Mahmood Ahmad Ghazanfar 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第10期87-94,共8页
This paper presents the gas distribution analysis by injecting air fountain into the containment and simulations with the HYDRAGON code. Turbulence models of standard k-ε(SKE), re-normalization group k-ε(RNG) and a ... This paper presents the gas distribution analysis by injecting air fountain into the containment and simulations with the HYDRAGON code. Turbulence models of standard k-ε(SKE), re-normalization group k-ε(RNG) and a realizable k-ε(RLZ) are used to assess the effects on the gas distribution analysis during a severe accident in a nuclear power plant. By comparing with experimental data,the simulation results of the RNG and SKE turbulence models agree well with the experimental data on the prediction of dimensionless density distributions. The results illustrate that the turbulence model choice had a small effect on the simulation results, particularly the region near to the air fountain source. 展开更多
关键词 湍流模型 气体分布 实验数据 严重事故 重整化群 分布检测 RNG 空气源
下载PDF
COMPUTATION OF TURBULENCE FLOW ON HYBRID GRIDS USING k-ω TURBULENCE MODEL AND OSHER SCHEME
13
作者 LIUXue-qiang WUYi-zhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期94-97,共4页
An unstructured Reynolds-averaged NavierStokes flow solver using the finite volume method is studied. The spatial discretisation is based on the Osher approximate Riemann solvers. A two-equatlon turbulence model (k-ω... An unstructured Reynolds-averaged NavierStokes flow solver using the finite volume method is studied. The spatial discretisation is based on the Osher approximate Riemann solvers. A two-equatlon turbulence model (k-ω model) is also developed for hybrid grids to compute the turbulence flow. The turbulence flow past NACA0012 airfoil and the double ellipsolids are computed, and the numerical results show that the above methods are very efficient. 展开更多
关键词 k-ω紊流模型 Osher格式 翼型 计算 Navier—Stokes方程 有限体积法
下载PDF
An Improved k-Equation Turbulence Model
14
作者 Md Mizanur Rahman Markku Lampinen Timo Siikonen 《Journal of Energy and Power Engineering》 2014年第11期1895-1907,共13页
关键词 湍流模型 输运方程 直接数值模拟 低雷诺数 模型应用 性能评估 MNR 代数关系
下载PDF
Effect of RANS Turbulence Model on Aerodynamic Behavior of Trains in Crosswind 被引量:17
15
作者 Tian Li Deng Qin Jiye Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期145-156,共12页
The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may pr... The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may present different aerodynamic performances in crosswind using different turbulence models.In order to select the most suitable turbulence model,the inter-city express 2(ICE2)model is chosen as a research object,6 different turbulence models are used to simulate the flow characteristics,surface pressure and aerodynamic forces of the train in crosswind,respectively.6 turbulence models are the standard k-ε,Renormalization Group(RNG)k-ε,Realizable k-ε,Shear Stress Transport(SST)k-ω,standard k-ωand Spalart-Allmaras(SPA),respectively.The numerical results and the wind tunnel experimental data are compared.The results show that the most accurate model for predicting the surface pressure of the train is SST k-ω,followed by Realizable k-ε.Compared with the experimental result,the error of the side force coefficient obtained by SST k-ωand Realizable k-εturbulence model is less than 1%.The most accurate prediction for the lift force coefficient is achieved by SST k-ω,followed by RNG k-ε.By comparing 6 different turbulence models,the SST k-ωmodel is most suitable for the numerical simulation of the aerodynamic behavior of trains in crosswind. 展开更多
关键词 turbulence model CROSSWIND High SPEED TRAIN Numerical simulation Aerodynamic
下载PDF
Effect of Time Step Size and Turbulence Model on the Open Water Hydrodynamic Performance Prediction of Contra-Rotating Propellers 被引量:15
16
作者 王展智 熊鹰 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期193-204,共12页
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati... A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers. 展开更多
关键词 contra-rotating propeller open water performance RANS time step size turbulence model
下载PDF
New perspective in statistical modeling of wall-bounded turbulence 被引量:13
17
作者 Zhen-Su She Xi Chen +1 位作者 You Wu Fazle Hussain 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期847-861,共15页
Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.A... Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical framework is general,independent of the flow system to study, while the actual functional form of the order functions may vary from flow to flow.We assert that as the knowledge of order functions is accumulated and as more flows are analyzed, new principles(such as hierarchy,symmetry,group invariance,etc.) governing the role of turbulent structures in the mean flow properties will be clarified and a viable theory of turbulence might emerge. 展开更多
关键词 Wall turbulence Statistical modeling Structure ensemble dynamics Order function MULTI-LAYER
下载PDF
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows 被引量:10
18
作者 Yong Yu Lixing Zhou +1 位作者 Baoguo Wang Feipeng Cai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期228-234,共7页
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin... A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot. 展开更多
关键词 turbulence Two-phase flow Second-ordermoment model
下载PDF
Modeling of Fluid Turbulence Modification Using Two-time-scale Dissipation Models and Accounting for the Particle Wake Effect 被引量:3
19
作者 于勇 周力行 王保国 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3X期314-320,共7页
关键词 turbulence MODIFICATION two time scale DISSIPATION model WAKE effect
下载PDF
Applying resolved-scale linearly forced isotropic turbulence in rational subgrid-scale modeling 被引量:5
20
作者 Chuhan Wang Mingwei Ge 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期486-494,共9页
In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is st... In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations. 展开更多
关键词 Homogeneous isotropic turbulence Large-eddy simulation SUBGRID-SCALE model FORCED turbulence
下载PDF
上一页 1 2 222 下一页 到第
使用帮助 返回顶部