Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering a...Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.展开更多
1 The Eddy Viscosity Is a Fourth-order Tensor In 1877 Boussinesq proposed that turbulence stress be proportional to the average velocity gradient.He introduced the concept of eddy viscosity coefficient and described t...1 The Eddy Viscosity Is a Fourth-order Tensor In 1877 Boussinesq proposed that turbulence stress be proportional to the average velocity gradient.He introduced the concept of eddy viscosity coefficient and described the turbulence stress展开更多
A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosi...A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosity tensor components is found from experimental re-sults for elementary flow of each kind of shearing flow, and then we can forecast thecomplicated shearing flows more accurately. In this way, the distributional laws of the ed-展开更多
It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development ...It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent bound- ary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS). It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart Allmaras (S A) model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S-A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S-A model are obviously improved. Thus it can be concluded that the mod- ification of S-A model with the pressure gradient can improve the predictive accuracy for simulat- ing the shock-wave/turbulent boundary laver interaction.展开更多
Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been fi...Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.展开更多
A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-inter...A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-interaction(SWBLI).To capture the essential behavior of this complex flow,the current study utilized an anisotropic turbulence model developed on the basis of a statistical partial average scheme.The first order moment of turbulent fluctuations,retained by a novel average scheme,and the turbulent length scale,can be determined from the momentum equations and mechanical energy equation of the fluctuation flow,respectively.The two physical quantities were readily used to construct the nonlinear anisotropic eddy viscosity tensor and to significantly improve the computational results.Comparisons between the computational results and experimental data were carried out for velocity profiles,pressure distribution,skin friction coefficient,Reynolds stress as well as streamline vectors distribution.Without using any empirical coefficients and wall functions,the numerical results were in good agreement with the available experimental data,further confirming that the nonlinear anisotropic eddy viscosity tensor is the decisive factor for the success of the computational results.展开更多
In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. U...In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model.展开更多
文摘Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.
基金Project supported by the National Natural Scienoe Foundation of China.
文摘1 The Eddy Viscosity Is a Fourth-order Tensor In 1877 Boussinesq proposed that turbulence stress be proportional to the average velocity gradient.He introduced the concept of eddy viscosity coefficient and described the turbulence stress
基金Project supported by the National Natural Science Foundation of China.
文摘A new eddy viscosity modelling of turbulence is proposed in ref. [1], whose characteristicsexpress the anisotropy of the turbulence stress. In ref. [1], the way of proposing somedistributional laws of the eddy viscosity tensor components is found from experimental re-sults for elementary flow of each kind of shearing flow, and then we can forecast thecomplicated shearing flows more accurately. In this way, the distributional laws of the ed-
基金supported by the National Natural Science Foundation of China (No.11302012,51376001,51136003)the National Basic Research Program of China (No.2012CB720205)+3 种基金the National Magnetic Confinement Fusion Research Program of China (No.2012GB102006)the Aeronautical Science Foundation of China (No.2012ZB51014)the ‘‘111’’ Project(No.B08009)the Astronautical Technology Innovation Foundation of China
文摘It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent bound- ary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS). It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart Allmaras (S A) model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S-A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S-A model are obviously improved. Thus it can be concluded that the mod- ification of S-A model with the pressure gradient can improve the predictive accuracy for simulat- ing the shock-wave/turbulent boundary laver interaction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832001 and 10872145)Opening Subject of State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
文摘Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.
基金Aerospace Power Foundation(6141B09050397)Foudamental Reasearch Foundation of North China University of Technology(110052971921/042).
文摘A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-interaction(SWBLI).To capture the essential behavior of this complex flow,the current study utilized an anisotropic turbulence model developed on the basis of a statistical partial average scheme.The first order moment of turbulent fluctuations,retained by a novel average scheme,and the turbulent length scale,can be determined from the momentum equations and mechanical energy equation of the fluctuation flow,respectively.The two physical quantities were readily used to construct the nonlinear anisotropic eddy viscosity tensor and to significantly improve the computational results.Comparisons between the computational results and experimental data were carried out for velocity profiles,pressure distribution,skin friction coefficient,Reynolds stress as well as streamline vectors distribution.Without using any empirical coefficients and wall functions,the numerical results were in good agreement with the available experimental data,further confirming that the nonlinear anisotropic eddy viscosity tensor is the decisive factor for the success of the computational results.
基金supported by the National Natural Science Foundation of China(Grant Nos.41006017,41476006)the Natural Science Foundation of Fujian Province of China(Grant No.2015J06010)
文摘In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model.
基金National high-tech research and development projects(863)(2007AA04Z122)The second inquiry learning and innovation experiment programs for university students of Hunan province:aerodynamic analysis and experimental research for sedan cabUniversity science research project of Hunan province(Project Number:09C592)