期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
周期分类和Single-Pass聚类相结合的话题识别与跟踪方法
被引量:
28
1
作者
税仪冬
瞿有利
黄厚宽
《北京交通大学学报》
CAS
CSCD
北大核心
2009年第5期85-89,共5页
针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定...
针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定程度之后,对已经聚类的报道进行周期分类,使话题簇精度提高,从而提高后续话题识别与跟踪精度.实验表明这种方法是有效的,能够降低漏检率与错检率,减少归一化错误识别代价.
展开更多
关键词
话题识别与跟踪
增量聚类
文本
分类
k-最近邻方法分类
下载PDF
职称材料
题名
周期分类和Single-Pass聚类相结合的话题识别与跟踪方法
被引量:
28
1
作者
税仪冬
瞿有利
黄厚宽
机构
北京交通大学计算机与信息技术学院
出处
《北京交通大学学报》
CAS
CSCD
北大核心
2009年第5期85-89,共5页
基金
教育部科学技术研究重点项目资助(108126)
文摘
针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定程度之后,对已经聚类的报道进行周期分类,使话题簇精度提高,从而提高后续话题识别与跟踪精度.实验表明这种方法是有效的,能够降低漏检率与错检率,减少归一化错误识别代价.
关键词
话题识别与跟踪
增量聚类
文本
分类
k-最近邻方法分类
Keywords
topic detection and tracking
incremental clustering
text categorization
k-
nearest neighbor classifier
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
周期分类和Single-Pass聚类相结合的话题识别与跟踪方法
税仪冬
瞿有利
黄厚宽
《北京交通大学学报》
CAS
CSCD
北大核心
2009
28
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部