期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于局部均值的K-近质心近邻光谱分类
被引量:
3
1
作者
屠良平
魏会明
+3 位作者
王志衡
韦鹏
罗阿理
赵永恒
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2015年第4期1103-1106,共4页
天体光谱包含着许多重要的关于天体的物理和化学信息,如天体表面的有效温度、重力加速度以及化学丰度等,天体光谱的处理和分析对天文研究具有重要的科学意义。一些大型巡天计划的实施(如SDSS,LAMOST等)使我们获得了海量的天文光谱数据,...
天体光谱包含着许多重要的关于天体的物理和化学信息,如天体表面的有效温度、重力加速度以及化学丰度等,天体光谱的处理和分析对天文研究具有重要的科学意义。一些大型巡天计划的实施(如SDSS,LAMOST等)使我们获得了海量的天文光谱数据,因此天文光谱数据的自动分类成为重要的科学研究课题,然而面对如此海量的光谱数据,一些传统的光谱自动分类方法已经不适用,迫切需要寻找高效率的光谱自动分类技术。研究了基于局部均值的K-近质心近邻(local mean-based K-nearest centroid neighbor,LMKNCN)算法在恒星(Star)、星系(Galaxy)和类星体(Quasar,QSO)的光谱分类中的应用。LMKNCN算法的基本思想是根据近质心近邻原则,从每一类训练样本集中为待测样本点选取k个近质心近邻点,然后根据每一类中所选取的k个近质心近邻点的均值点到待测样本点x的距离来判别x的所属类别。针对美国SDSS-DR8的天体光谱数据,对比了K-近邻、K-近质心近邻、LMKNCN三种算法在恒星、星系和类星体的光谱分类中所表现的性能,结果表明三种方法中,LMKNCN算法对这三种光谱的识别率高于其他两种算法或者与其相当,而且其平均分类正确率高于另外两种算法,特别是在类星体的识别率上表现的更好。表明了该算法对天文光谱大数据的快速处理和有效利用具有重要的意义。
展开更多
关键词
光谱分类
k-
近邻
近
质心
近邻
k-近质心近邻
下载PDF
职称材料
基于局部权重k-近质心近邻算法
被引量:
2
2
作者
谢红
赵洪野
解武
《应用科技》
CAS
2015年第5期10-13,共4页
k-近质心近邻原则是k-近邻原则的一种有效扩展,是有效的模式分类方法之一。k-近质心近邻原则容易受到局外点的影响;同时,所有的k-近质心近邻点在分类决策时具有相同的权重和分类贡献率,这显然是不合理的。为了解决这一问题,考虑到质心...
k-近质心近邻原则是k-近邻原则的一种有效扩展,是有效的模式分类方法之一。k-近质心近邻原则容易受到局外点的影响;同时,所有的k-近质心近邻点在分类决策时具有相同的权重和分类贡献率,这显然是不合理的。为了解决这一问题,考虑到质心近邻在模式分类问题上具有近邻特性和空间分布特性,提出一种基于局部权重的近质心近邻算法,实验结果表明该LWKNCN算法在分类精度上优于传统的KNN算法和KNCN算法。
展开更多
关键词
模式分类
近邻
原则
k-
近邻
k-近质心近邻
局部权重
下载PDF
职称材料
题名
基于局部均值的K-近质心近邻光谱分类
被引量:
3
1
作者
屠良平
魏会明
王志衡
韦鹏
罗阿理
赵永恒
机构
辽宁科技大学理学院
河南理工大学计算机科学与技术学院
中国科学院光学天文重点实验室
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2015年第4期1103-1106,共4页
基金
国家自然科学基金项目(61202315,61273248)
辽宁省教育厅项目(L2012098)资助
文摘
天体光谱包含着许多重要的关于天体的物理和化学信息,如天体表面的有效温度、重力加速度以及化学丰度等,天体光谱的处理和分析对天文研究具有重要的科学意义。一些大型巡天计划的实施(如SDSS,LAMOST等)使我们获得了海量的天文光谱数据,因此天文光谱数据的自动分类成为重要的科学研究课题,然而面对如此海量的光谱数据,一些传统的光谱自动分类方法已经不适用,迫切需要寻找高效率的光谱自动分类技术。研究了基于局部均值的K-近质心近邻(local mean-based K-nearest centroid neighbor,LMKNCN)算法在恒星(Star)、星系(Galaxy)和类星体(Quasar,QSO)的光谱分类中的应用。LMKNCN算法的基本思想是根据近质心近邻原则,从每一类训练样本集中为待测样本点选取k个近质心近邻点,然后根据每一类中所选取的k个近质心近邻点的均值点到待测样本点x的距离来判别x的所属类别。针对美国SDSS-DR8的天体光谱数据,对比了K-近邻、K-近质心近邻、LMKNCN三种算法在恒星、星系和类星体的光谱分类中所表现的性能,结果表明三种方法中,LMKNCN算法对这三种光谱的识别率高于其他两种算法或者与其相当,而且其平均分类正确率高于另外两种算法,特别是在类星体的识别率上表现的更好。表明了该算法对天文光谱大数据的快速处理和有效利用具有重要的意义。
关键词
光谱分类
k-
近邻
近
质心
近邻
k-近质心近邻
Keywords
Spectra classification
k-
nearest neighbor
Nearest centroid neighborhood
k-
nearest centroid neighbor
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于局部权重k-近质心近邻算法
被引量:
2
2
作者
谢红
赵洪野
解武
机构
哈尔滨工程大学信息与通信工程学院
出处
《应用科技》
CAS
2015年第5期10-13,共4页
基金
黑龙江省自然科学基金资助项目(F201339)
文摘
k-近质心近邻原则是k-近邻原则的一种有效扩展,是有效的模式分类方法之一。k-近质心近邻原则容易受到局外点的影响;同时,所有的k-近质心近邻点在分类决策时具有相同的权重和分类贡献率,这显然是不合理的。为了解决这一问题,考虑到质心近邻在模式分类问题上具有近邻特性和空间分布特性,提出一种基于局部权重的近质心近邻算法,实验结果表明该LWKNCN算法在分类精度上优于传统的KNN算法和KNCN算法。
关键词
模式分类
近邻
原则
k-
近邻
k-近质心近邻
局部权重
Keywords
pattern classification
nearest neighbor rule
k-
nearest neighbor rule
k-
nearest centroid neighbor rule
local weight
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于局部均值的K-近质心近邻光谱分类
屠良平
魏会明
王志衡
韦鹏
罗阿理
赵永恒
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2015
3
下载PDF
职称材料
2
基于局部权重k-近质心近邻算法
谢红
赵洪野
解武
《应用科技》
CAS
2015
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部