期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种适用于轴承故障诊断半监督学习分类的多层图卷积注意力融合网络
1
作者 魏春虎 程峰 +1 位作者 曾玉海 杨世飞 《机电工程》 CAS 北大核心 2024年第8期1364-1375,共12页
图卷积网络的平滑运行会导致其无法通过深度网络堆叠捕获深层信息,为了解决这个问题,提出了一种适用于滚动轴承故障诊断半监督学习分类的多层图卷积注意力融合网络(MGCAN)。首先,采用频域构图法将数据转换为图模型,捕获了数据的内在结... 图卷积网络的平滑运行会导致其无法通过深度网络堆叠捕获深层信息,为了解决这个问题,提出了一种适用于滚动轴承故障诊断半监督学习分类的多层图卷积注意力融合网络(MGCAN)。首先,采用频域构图法将数据转换为图模型,捕获了数据的内在结构信息,将构建好的图数据输入网络,逐层提取特征信息,从浅层到深层逐步加深对数据特征的理解;然后,对每一层图卷积信息进行了有序拼接,同时引入了图注意力机制,使网络能够自动关注对分类任务比较重要的信息,从而提高了网络的性能和鲁棒性;最终,通过迭代学习,网络能够不断优化模型参数,对故障信息进行了准确识别;对不同工作条件下的滚动轴承进行了多次实验,并将该方法与传统的基于深度学习的方法进行了分析比较。研究结果表明:即使在标记数据只有10%的前提下,采用该网络依旧能够达到88%以上的识别准确度,并且适用于匀速和变速等不同的工况。上述结果证明,在选择适当方法保留多层图卷积中的有用信息后,深度图卷积网络可以成为诊断滚动轴承故障的一大利器。 展开更多
关键词 轴承故障诊断 多层卷积注意力融合网络 多层卷积信息 注意力机制 k-近邻图 深度学习 识别准确度
下载PDF
k-NN Based Bypass Entropy and Mutual Information Estimation for Incremental Remote-Sensing Image Compressibility Evaluation 被引量:2
2
作者 Xijia Liu Xiaoming Tao +1 位作者 Yiping Duan Ning Ge 《China Communications》 SCIE CSCD 2017年第8期54-62,共9页
Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still... Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames. 展开更多
关键词 remote-sensing incremental image compression entropy mutual information
下载PDF
基于局部密度和测地距离的谱聚类
3
作者 张涛 葛洪伟 +1 位作者 苏辉 张欢庆 《计算机工程与应用》 CSCD 北大核心 2017年第7期141-146,262,共7页
传统根据K-近邻图计算测地距离的方法,虽然能够发现流形分布数据间的相似关系,但是当不同类的点存在粘连关系时,依此计算相似度时不能体现样本间的真实关系,从而无法有效聚类。针对传统测地距离计算相似度的方法不能有效处理粘连数据集... 传统根据K-近邻图计算测地距离的方法,虽然能够发现流形分布数据间的相似关系,但是当不同类的点存在粘连关系时,依此计算相似度时不能体现样本间的真实关系,从而无法有效聚类。针对传统测地距离计算相似度的方法不能有效处理粘连数据集的问题,提出了基于局部密度和测地距离的谱聚类方法。计算样本的局部密度,寻找每个样本点的最近高密度点,并选择边缘点和非边缘点;在边缘点和其最近高密度点之间构造边、非边缘点之间的K个近邻点构造边,依此计算测地距离和相似度并进行聚类。在人工数据集和UCI数据集上的实验表明,该算法在处理粘连数据集时有效提高了聚类准确率。 展开更多
关键词 k-近邻图 测地距离 局部密度 相似度 谱聚类
下载PDF
基于标签传播半监督学习的电压暂降源识别 被引量:8
4
作者 王世旭 吕干云 《电力系统及其自动化学报》 CSCD 北大核心 2013年第4期34-38,共5页
针对带标签(类别已知)的电压暂降历史样本数据有限且不易获得的情况,引入基于标签传播半监督学习的电压暂降源识别方法。首先从电压暂降信号中提取了五类暂降信号特征,建立了K-近邻图模型,并实现了图模型上的标签传播。分析了图模型参数... 针对带标签(类别已知)的电压暂降历史样本数据有限且不易获得的情况,引入基于标签传播半监督学习的电压暂降源识别方法。首先从电压暂降信号中提取了五类暂降信号特征,建立了K-近邻图模型,并实现了图模型上的标签传播。分析了图模型参数k、α对标签传播结果的影响,同时与神经网络、最小二乘支持向量机等监督学习算法的识别结果进行了对比。仿真结果表明,在历史数据较少的情况下,标签传播算法比传统监督学习算法具有更高的识别准确率且实时性好。 展开更多
关键词 电压暂降源识别 标签传播 半监督 特征提取 k-近邻图模型
下载PDF
基于改进ADPP的多变量时间序列异常检测
5
作者 董红玉 陈晓云 《福州大学学报(自然科学版)》 CAS 北大核心 2016年第2期164-169,共6页
针对多变量时间序列异常检测问题进行研究,提出基于改进ADPP的多变量时间序列异常检测算法IADPP.IADPP算法引入适用于多变量时间序列的张量相似性度量SSOTPCA,并以此相似性度量构造序列集的k-近邻图,在构造的k-近邻图上计算多变量时间... 针对多变量时间序列异常检测问题进行研究,提出基于改进ADPP的多变量时间序列异常检测算法IADPP.IADPP算法引入适用于多变量时间序列的张量相似性度量SSOTPCA,并以此相似性度量构造序列集的k-近邻图,在构造的k-近邻图上计算多变量时间序列的异常系数.研究结果表明,IADPP算法克服了原有ADPP算法不支持多变量时间序列和要求密度均匀的缺陷,取得了较好的检测结果. 展开更多
关键词 多变量时间序列 异常检测 张量相似性度量 k-近邻图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部