期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
k-C*模型的人工湿地模拟研究 被引量:6
1
作者 赵蓉 陈东宇 +1 位作者 周少奇 吴彦瑜 《环境工程学报》 CAS CSCD 北大核心 2012年第1期163-167,共5页
采用自由表面流人工湿地,对广东省中山市某小区对应段的河涌进行生态修复改造。基于k-C*模型的计算结果表明,在对现有河涌的面积的利用下,TP和NH4+-N的去除效果受到限制。采用多因素正交实验对模型的计算结果进行实验验证和分析,研究了... 采用自由表面流人工湿地,对广东省中山市某小区对应段的河涌进行生态修复改造。基于k-C*模型的计算结果表明,在对现有河涌的面积的利用下,TP和NH4+-N的去除效果受到限制。采用多因素正交实验对模型的计算结果进行实验验证和分析,研究了4种植物、4种基质,分别在2、4、6和8 d水力停留时间(HRT)下对TP和NH4+-N的去除效果,得到影响TP和NH4+-N去除效果的因素主次顺序分别为基质→植物→HRT和基质→HRT→植物;各因素的最佳水平条件分别为:风车草、颗粒活性炭、4 d(HRT)。在最佳水平条件下进行实验,结果表明,TP和NH4+-N的浓度均可达到出水排放标准浓度指标。k-C*模型的计算值总是比实验值偏高,但两者之间的误差在一个数量级范围内。 展开更多
关键词 自由表面流人工湿地 k-c*模型 正交实验
原文传递
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
2
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部