为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任...为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任意一点作为kN N的数据点集合,在实际应用中可以用来评估一组查询对象的影响力。该方法的特点是首先对查询点集Q进行优化处理,降低查询点数量对查询效率的负面影响;接着对数据点集P进行约减,缩小查询搜索范围;然后根据基于Voronoi图的剪枝策略对候选集进行过滤;最后经过精炼获得GRk NN查询的结果集。该方法在数据集处理阶段很大程度上提高了查询速度,在过滤、精炼阶段利用Voronoi图的特性提高了查询的准确性。理论研究和实验表明,所提方法的效率明显优于可选的已有方法。展开更多
文摘为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任意一点作为kN N的数据点集合,在实际应用中可以用来评估一组查询对象的影响力。该方法的特点是首先对查询点集Q进行优化处理,降低查询点数量对查询效率的负面影响;接着对数据点集P进行约减,缩小查询搜索范围;然后根据基于Voronoi图的剪枝策略对候选集进行过滤;最后经过精炼获得GRk NN查询的结果集。该方法在数据集处理阶段很大程度上提高了查询速度,在过滤、精炼阶段利用Voronoi图的特性提高了查询的准确性。理论研究和实验表明,所提方法的效率明显优于可选的已有方法。