This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two le...This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two learner layers: a primary learner’s layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index(TPI) and field penetration index(FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method(EM) and silhouette coefficient(Si) are employed to determine the types of geological characteristics(K) in a Kmeans++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.展开更多
Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives.Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay ...Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives.Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay its onset.In this study,we proposed a Deep Dense Layer Neural Network(DDLNN)for diabetes prediction using a dataset with 768 instances and nine variables.We also applied a combination of classical machine learning(ML)algorithms and ensemble learning algorithms for the effective prediction of the disease.The classical ML algorithms used were Support Vector Machine(SVM),Logistic Regression(LR),Decision Tree(DT),K-Nearest Neighbor(KNN),and Naïve Bayes(NB).We also constructed ensemble models such as bagging(Random Forest)and boosting like AdaBoost and Extreme Gradient Boosting(XGBoost)to evaluate the performance of prediction models.The proposed DDLNN model and ensemble learning models were trained and tested using hyperparameter tuning and K-Fold cross-validation to determine the best parameters for predicting the disease.The combined ML models used majority voting to select the best outcomes among the models.The efficacy of the proposed and other models was evaluated for effective diabetes prediction.The investigation concluded that the proposed model,after hyperparameter tuning,outperformed other learning models with an accuracy of 84.42%,a precision of 85.12%,a recall rate of 65.40%,and a specificity of 94.11%.展开更多
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo...Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.展开更多
Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI ...Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.展开更多
Technological advancement has contributed immensely to human life and society.Technologies like industrial robots,artificial intelligence,and machine learning are advancing at a rapid pace.While the evolution of Artif...Technological advancement has contributed immensely to human life and society.Technologies like industrial robots,artificial intelligence,and machine learning are advancing at a rapid pace.While the evolution of Artificial Intelligence has contributed significantly to the development of personal assistants,automated drones,smart home devices,etc.,it has also raised questions about the much-anticipated point in the future where machines may develop intelligence that may be equal to or greater than humans,a term that is popularly known as Technological Singularity.Although technological singularity promises great benefits,past research works on Artificial Intelligence(AI)systems going rogue highlight the downside of Technological Singularity and assert that it may lead to catastrophic effects.Thus,there is a need to identify factors that contribute to technological advancement and may ultimately lead to Technological Singularity in the future.In this paper,we identify factors such as Number of scientific publications in Artificial Intelligence,Number of scientific publications in Machine Learning,Dynamic RAM(Random Access Memory)Price,Number of Transistors,and Speed of Computers’Processors,and analyze their effects on Technological Singularity using Regression methods(Multiple Linear Regression and Simple Linear Regression).The predictive ability of the models has been validated using PRESS and k-fold cross-validation.Our study shows that academic advancement in AI and ML and Dynamic RAM prices contribute significantly to Technological Singularity.Investigating the factors would help researchers and industry experts comprehend what leads to Technological Singularity and,if needed,how to prevent undesirable outcomes.展开更多
Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China ...Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China due to their complexity in formation mechanism and the difficulty in prediction.Data collected from 102 glacier debris flow events from 31 gullies since 1970 and regional meteorological data from 1970 to 2019 in ParlungZangbo River Basin in southeastern Tibet were used for Artificial Neural Network(ANN)-based prediction of glacial debris flows.The formation mechanism of glacial debris flows in the ParlungZangbo Basin was systematically analyzed,and the calculations involving the meteorological data and disaster events were conducted by using the statistical methods and two layers fully connected neural networks.The occurrence probabilities and scales of glacial debris flows(small,medium,and large)were predicted,and promising results have been achieved.Through the proposed model calculations,a prediction accuracy of 78.33%was achieved for the scale of glacial debris flows in the study area.The prediction accuracy for both large-and medium-scale debris flows are higher than that for small-scale debris flows.The debris flow scale and the probability of occurrence increase with increasing rainfall and temperature.In addition,the K-fold cross-validation method was used to verify the reliability of the model.The average accuracy of the model calculated under this method is about 93.3%,which validates the proposed model.Practices have proved that the combination of ANN and disaster events can provide sound prediction on geological hazards under complex conditions.展开更多
This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and divi...This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.展开更多
The process of selecting an artificial intelligence(AI)model to assist clinical diagnosis of a particular pathology and its validation tests is relevant since the values of accuracy,sensitivity and specificity may not...The process of selecting an artificial intelligence(AI)model to assist clinical diagnosis of a particular pathology and its validation tests is relevant since the values of accuracy,sensitivity and specificity may not reflect the behavior of the method in a real environment.Here,we provide helpful considerations to increase the success of using an AI model in clinical practice.展开更多
Current cancer diagnosis procedure requires expert knowledge and is time-consuming,which raises the need to build an accurate diagnosis support system for lymphoma identification and classification.Many studies have s...Current cancer diagnosis procedure requires expert knowledge and is time-consuming,which raises the need to build an accurate diagnosis support system for lymphoma identification and classification.Many studies have shown promising results using Machine Learning and,recently,Deep Learning to detect malignancy in cancer cells.However,the diversity and complexity of the morphological structure of lymphoma make it a challenging classification problem.In literature,many attempts were made to classify up to four simple types of lymphoma.This paper presents an approach using a reliable model capable of diagnosing seven different categories of rare and aggressive lymphoma.These Lymphoma types are Classical Hodgkin Lymphoma,Nodular Lymphoma Predominant,Burkitt Lymphoma,Follicular Lymphoma,Mantle Lymphoma,Large B-Cell Lymphoma,and T-Cell Lymphoma.Our proposed approach uses Residual Neural Networks,ResNet50,with a Transfer Learning for lymphoma’s detection and classification.The model used results are validated according to the performance evaluation metrics:Accuracy,precision,recall,F-score,and kappa score for the seven multi-classes.Our algorithms are tested,and the results are validated on 323 images of 224×224 pixels resolution.The results are promising and show that our used model can classify and predict the correct lymphoma subtype with an accuracy of 91.6%.展开更多
基金funded by“The Pearl River Talent Recruitment Program”of Guangdong Province in 2019(Grant No.2019CX01G338)the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019).
文摘This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two learner layers: a primary learner’s layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index(TPI) and field penetration index(FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method(EM) and silhouette coefficient(Si) are employed to determine the types of geological characteristics(K) in a Kmeans++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.
文摘Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives.Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay its onset.In this study,we proposed a Deep Dense Layer Neural Network(DDLNN)for diabetes prediction using a dataset with 768 instances and nine variables.We also applied a combination of classical machine learning(ML)algorithms and ensemble learning algorithms for the effective prediction of the disease.The classical ML algorithms used were Support Vector Machine(SVM),Logistic Regression(LR),Decision Tree(DT),K-Nearest Neighbor(KNN),and Naïve Bayes(NB).We also constructed ensemble models such as bagging(Random Forest)and boosting like AdaBoost and Extreme Gradient Boosting(XGBoost)to evaluate the performance of prediction models.The proposed DDLNN model and ensemble learning models were trained and tested using hyperparameter tuning and K-Fold cross-validation to determine the best parameters for predicting the disease.The combined ML models used majority voting to select the best outcomes among the models.The efficacy of the proposed and other models was evaluated for effective diabetes prediction.The investigation concluded that the proposed model,after hyperparameter tuning,outperformed other learning models with an accuracy of 84.42%,a precision of 85.12%,a recall rate of 65.40%,and a specificity of 94.11%.
基金financial support from High-end Foreign Expert Introduction program(No.G20190022002)Chongqing Construction Science and Technology Plan Project(2019-0045)as well as Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(Nos.SXAPGC18ZD01 and SXAPGC18YB03)。
文摘Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project Number PNU-DRI-RI-20-029.
文摘Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.
文摘Technological advancement has contributed immensely to human life and society.Technologies like industrial robots,artificial intelligence,and machine learning are advancing at a rapid pace.While the evolution of Artificial Intelligence has contributed significantly to the development of personal assistants,automated drones,smart home devices,etc.,it has also raised questions about the much-anticipated point in the future where machines may develop intelligence that may be equal to or greater than humans,a term that is popularly known as Technological Singularity.Although technological singularity promises great benefits,past research works on Artificial Intelligence(AI)systems going rogue highlight the downside of Technological Singularity and assert that it may lead to catastrophic effects.Thus,there is a need to identify factors that contribute to technological advancement and may ultimately lead to Technological Singularity in the future.In this paper,we identify factors such as Number of scientific publications in Artificial Intelligence,Number of scientific publications in Machine Learning,Dynamic RAM(Random Access Memory)Price,Number of Transistors,and Speed of Computers’Processors,and analyze their effects on Technological Singularity using Regression methods(Multiple Linear Regression and Simple Linear Regression).The predictive ability of the models has been validated using PRESS and k-fold cross-validation.Our study shows that academic advancement in AI and ML and Dynamic RAM prices contribute significantly to Technological Singularity.Investigating the factors would help researchers and industry experts comprehend what leads to Technological Singularity and,if needed,how to prevent undesirable outcomes.
基金supported by the National Natural Science Foundation of China(Grant No.41671112)the Sichuan Province Science and Technology Plan Project Key research and development projects(Grant No.18ZDYF0329)the National Natural Science Foundation of China(Grant No.41861134008)。
文摘Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China due to their complexity in formation mechanism and the difficulty in prediction.Data collected from 102 glacier debris flow events from 31 gullies since 1970 and regional meteorological data from 1970 to 2019 in ParlungZangbo River Basin in southeastern Tibet were used for Artificial Neural Network(ANN)-based prediction of glacial debris flows.The formation mechanism of glacial debris flows in the ParlungZangbo Basin was systematically analyzed,and the calculations involving the meteorological data and disaster events were conducted by using the statistical methods and two layers fully connected neural networks.The occurrence probabilities and scales of glacial debris flows(small,medium,and large)were predicted,and promising results have been achieved.Through the proposed model calculations,a prediction accuracy of 78.33%was achieved for the scale of glacial debris flows in the study area.The prediction accuracy for both large-and medium-scale debris flows are higher than that for small-scale debris flows.The debris flow scale and the probability of occurrence increase with increasing rainfall and temperature.In addition,the K-fold cross-validation method was used to verify the reliability of the model.The average accuracy of the model calculated under this method is about 93.3%,which validates the proposed model.Practices have proved that the combination of ANN and disaster events can provide sound prediction on geological hazards under complex conditions.
文摘This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.
基金Supported by SEDENA Budgetary Program,No.A022-2021.
文摘The process of selecting an artificial intelligence(AI)model to assist clinical diagnosis of a particular pathology and its validation tests is relevant since the values of accuracy,sensitivity and specificity may not reflect the behavior of the method in a real environment.Here,we provide helpful considerations to increase the success of using an AI model in clinical practice.
文摘Current cancer diagnosis procedure requires expert knowledge and is time-consuming,which raises the need to build an accurate diagnosis support system for lymphoma identification and classification.Many studies have shown promising results using Machine Learning and,recently,Deep Learning to detect malignancy in cancer cells.However,the diversity and complexity of the morphological structure of lymphoma make it a challenging classification problem.In literature,many attempts were made to classify up to four simple types of lymphoma.This paper presents an approach using a reliable model capable of diagnosing seven different categories of rare and aggressive lymphoma.These Lymphoma types are Classical Hodgkin Lymphoma,Nodular Lymphoma Predominant,Burkitt Lymphoma,Follicular Lymphoma,Mantle Lymphoma,Large B-Cell Lymphoma,and T-Cell Lymphoma.Our proposed approach uses Residual Neural Networks,ResNet50,with a Transfer Learning for lymphoma’s detection and classification.The model used results are validated according to the performance evaluation metrics:Accuracy,precision,recall,F-score,and kappa score for the seven multi-classes.Our algorithms are tested,and the results are validated on 323 images of 224×224 pixels resolution.The results are promising and show that our used model can classify and predict the correct lymphoma subtype with an accuracy of 91.6%.