期刊文献+
共找到44,489篇文章
< 1 2 250 >
每页显示 20 50 100
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:1
1
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-means 特征空间增强 mixup算法
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
2
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means算法 遗传算法 混合算法
下载PDF
管制扇区运行稳度K-means聚类与分析
3
作者 岳仁田 杨果果 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期98-104,共7页
为更好地分析管制扇区运行存在的稳定亚安全状态和不稳定亚安全状态,使用K-means算法划分超容比(ECR)、滞留度和飞行姿态混合比3个管制扇区运行稳度评价指标聚类,确定管制扇区运行稳度最佳等级划分;聚类分析单一指标,获得各等级对应的... 为更好地分析管制扇区运行存在的稳定亚安全状态和不稳定亚安全状态,使用K-means算法划分超容比(ECR)、滞留度和飞行姿态混合比3个管制扇区运行稳度评价指标聚类,确定管制扇区运行稳度最佳等级划分;聚类分析单一指标,获得各等级对应的指标阈值,结合熵权法计算的指标权重,遵循隶属度最大原则,获取各时间段的管制扇区运行稳度等级,构建管制扇区运行稳度综合评价模型;选取厦门01号扇区的实际飞行数据,从稳度和趋度2个角度更加全面地分析管制扇区运行态势。结果表明:管制扇区运行稳度等级划分为3类时效果最好;稳度受空中交通流和管制状况的影响会随时间而变化,尤其7:30—9:15和20:00—21:00这2个时间段管制扇区运行稳度的变化最为明显,需引起管制员高度重视,提高空域运行安全。 展开更多
关键词 管制扇区 运行稳度 趋度 k-means 综合评价
下载PDF
基于蚁群算法的三支k-means聚类算法
4
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means k-means算法 中心 蚁群算法
下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析
5
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进k-means算法 典型出力场景 出力特性分析
下载PDF
基于k-means聚类算法的兴义维蚋幼虫龄数的估算
6
作者 赵娜 王毅 +4 位作者 杨曜铭 吴慧 修江帆 寻慧 杨明 《贵州医科大学学报》 CAS 2024年第8期1120-1127,共8页
目的探讨基于k-means聚类算法估算兴义维蚋幼虫的龄数,以明确虫龄与日龄及鳃斑发育阶段的关系。方法采集贵州青岩河流中兴义维蚋虫卵,于实验室的蚋类饲养系统中培育至幼虫,每日收集幼虫至大量化蛹,持续20 d;收集到幼虫1112头,于体视显... 目的探讨基于k-means聚类算法估算兴义维蚋幼虫的龄数,以明确虫龄与日龄及鳃斑发育阶段的关系。方法采集贵州青岩河流中兴义维蚋虫卵,于实验室的蚋类饲养系统中培育至幼虫,每日收集幼虫至大量化蛹,持续20 d;收集到幼虫1112头,于体视显微镜下测量头壳长(HCW)、后颊长(PGL)、上颚基横骨长(MPL)及体长(BL),观察不同虫龄幼虫的破卵器、鳃斑及性腺的形态学特征,并判断其龄期、分析虫龄与日龄和鳃斑发育关系;选取具有明显腮斑发育的兴义维蚋幼虫10头、制作石蜡切片,采用HE染色鉴定精巢和卵巢、辅助确认性别鉴定结果;采用k-means聚类方法划分形态计量学数据、利用Brooks-Dyar定律检测k-means聚类结果,R语言下行聚类与Brooks-Dyar定律检验、t检验等,根据拟合度分析判断兴义维蚋幼虫龄数。结果1112头兴义维蚋幼虫中有破卵器89头,出现鳃斑发育334头,6~7龄幼虫320头,有预蛹特征34头;Brooks-Dyar定律与破卵器、鳃斑形态特征显示7龄幼虫假设符合昆虫幼虫生长规律;组织学观察见幼虫精巢为椭圆形、体积大、外有几丁质层包裹,卵巢为长条形、体积小、后端有色素细胞包裹;鉴定6、7龄幼虫性别结果,仅7龄幼虫雌雄性PGL有差异(P<0.05);幼虫虫龄与日龄、鳃斑发育关系结果显示,约2~3 d对应1个幼虫生长龄期,第17天首见幼虫蛹化,6龄幼虫出现明显的鳃斑。结论兴义维蚋幼虫具7龄,实验室下幼虫发育约需3周,最短17 d;腮斑发育起始于6龄,7龄出现明显形态学特征。 展开更多
关键词 蚋科 组织学 性腺 龄数 形态计量学 k-means
下载PDF
基于K-means聚类和BP神经网络的电梯能耗实时监测方法
7
作者 彭诚 《通化师范学院学报》 2024年第4期50-56,共7页
针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,... 针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,利用相似系数法进行相似度计算,获取相似系数.对相似电梯能耗数据进行小波分解获取高低频序列,分别采用LSSVM-GSA检测方法和均方加权处理方法对低频和高频部分进行处理,将两个结果进行重构,得到最终的实时监测结果 .仿真实验结果表明:所提方法能够获取高精度、低耗时、高稳定性的监测结果 . 展开更多
关键词 电梯能耗 k-means算法 BP神经网络 数据清洗
下载PDF
基于主题词向量中心点的K-means文本聚类算法
8
作者 季铎 刘云钊 +1 位作者 彭如香 孔华锋 《计算机应用与软件》 北大核心 2024年第10期282-286,318,共6页
K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策... K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策图进行初始类中心的选择,利用每个类簇的主题词向量替代均值作为迭代类中心。实验表明,该文的初始点选取方法能够准确地选取初始点,且利用主题词向量作为迭代类中心能够很好地避免噪声点和噪声特征的影响,很大程度上地提高了K-means算法的性能。 展开更多
关键词 k-means 初始点 决策图 迭代中心 主题词向量
下载PDF
基于改进K-means数据聚类算法的网络入侵检测
9
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
启发式k-means聚类算法的改进研究
10
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 算法 k-means 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
11
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 k-means算法 网络异常 数据挖掘 数据分 离群点检测
下载PDF
一种融合乌鸦搜索算法的K-means聚类算法
12
作者 高海宾 《新乡学院学报》 2024年第3期19-25,共7页
传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全... 传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全局搜索能力,自动确定最佳的聚类数目K,从而提高聚类的质量和效率。通过在Seeds数据集进行实验计算卡林斯基-哈拉巴斯(Calinski-Harabasz)指数等评价指标,发现该算法聚类效果明显优于传统的K-means算法。 展开更多
关键词 k-means算法 乌鸦搜索算法 Calinski-Harabasz指数
下载PDF
基于交通拥堵信息的高速公路拥堵路段ACK-Means聚类
13
作者 陈昕 阮永娇 肇毓 《科学技术与工程》 北大核心 2024年第21期9194-9200,共7页
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇... 为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。 展开更多
关键词 交通拥堵 ACk-means算法 自适应中心 自适应K值 交通拥堵信息
下载PDF
基于改进K-means聚类和皮尔逊相关系数户变关系异常诊断 被引量:4
14
作者 周纲 黄瑞 +3 位作者 刘度度 张芝敏 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第3期76-82,152,共8页
用电信息采集系统易出现台区户变关系错误问题,传统诊断技术主要针对少用户台区出现异常用户情况,但对于多达数百用户台区,存在多相邻台区异常用户特征提取难题。文中首先通过主成分分析对GIS系统获取台区总表和用户电表电压数据实现降... 用电信息采集系统易出现台区户变关系错误问题,传统诊断技术主要针对少用户台区出现异常用户情况,但对于多达数百用户台区,存在多相邻台区异常用户特征提取难题。文中首先通过主成分分析对GIS系统获取台区总表和用户电表电压数据实现降维,建立改进K-means聚类提取电压数据特征,提出改进皮尔逊相关系数算法分析待检测用户,据此建立基于改进K-means聚类和改进皮尔逊相关系数的户变关系异常诊断方法,实现多异常用户所属正确台区诊断。实际算例分析结果表明,文中提出算法在识别同一台区一个及多个异常用户、不同台区多个异常用户情况下均能有效实现异常用户的准确检测与分析,相比传统检测方法,实现简单且准确性更高。 展开更多
关键词 户变关系 GIS系统 主成分分析 改进k-means
下载PDF
基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估 被引量:1
15
作者 管筝 印涌强 +1 位作者 张晓祥 陈跃红 《应用科学学报》 CAS CSCD 北大核心 2024年第3期388-404,共17页
为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平... 为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平方和与平均轮廓系数为聚类效果评价指标,将小流域分为2个类内聚集、类外分散的子集。最后,针对不同子集,从几何特征、环境特征以及降水特征3个方面选取平均坡度、形心高程、形状系数、最长汇流路径比降、地形湿度指数、归一化植被指数、距离河流最近距离、降雨量、洪峰模数以及汇流时间10个山洪影响因素,应用自适应增强算法与极致梯度提升算法进行山洪灾害易发性评估。研究发现,降水是导致山洪灾害的重要因素,江西省高降水区域山洪灾害易发程度普遍高于低降水区,同时省内高风险区分布较为分散,主要分布在东北区域与西北边缘区域。对聚类后两类相似小流域分别进行山洪易发性评估,接受者操作特征曲线下面积值均在0.90以上,精度较聚类前有所提高。聚类策略作为易发性评估模型的前驱过程,可以有效解决小流域异质性问题。 展开更多
关键词 空间异质性 k-means 集成学习 自适应增强 极致梯度提升 山洪灾害
下载PDF
结合人工蜂群与K-means聚类的特征选择 被引量:1
16
作者 孙林 刘梦含 薛占熬 《计算机科学与探索》 CSCD 北大核心 2024年第1期93-110,共18页
K-means聚类是一种简捷高效、收敛速度快且易于实现的统计分析方法,但是传统的K-means聚类算法对初始聚类中心的选取敏感且易陷入局部最优,同时多数无监督特征选择算法容易忽视特征之间的联系。为此,提出了一种结合人工蜂群与K-means聚... K-means聚类是一种简捷高效、收敛速度快且易于实现的统计分析方法,但是传统的K-means聚类算法对初始聚类中心的选取敏感且易陷入局部最优,同时多数无监督特征选择算法容易忽视特征之间的联系。为此,提出了一种结合人工蜂群与K-means聚类的特征选择方法。首先,为了使同一簇中样本的相似度高而不同簇中样本的相似度低,基于簇内聚集度和簇间离散度构建了新的适应度函数,更好地反映各样本的特性,进而构建了蜜源被选择新的概率表达式;其次,设计了随着迭代次数的增加而数值逐渐减小的权重,提出了使蜂群搜索范围动态缩进的蜜源位置更新表达式;然后,为了弥补传统的欧氏距离在计算距离时仅考虑向量之间的累积差异而表现出的局限性,构造了同时考虑样本影响程度不同以及样本的相似性的加权欧氏距离表达式;最后,引入标准差和距离相关系数,定义了特征区分度与特征代表性,以二者之积度量特征重要性。实验结果表明,所提算法加快了人工蜂群算法的收敛速度并提高了K-means算法的聚类效果,同时也有效地提升了特征选择的分类效果。 展开更多
关键词 特征选择 人工蜂群 k-means 特征重要度
下载PDF
一种基于K-means聚类算法的沙尘天气客观识别方法 被引量:1
17
作者 段赛男 焦瑞莉 吴成来 《气候与环境研究》 CSCD 北大核心 2024年第2期178-192,共15页
鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数... 鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数目K进行聚类,其次对聚类结果中离散程度较高的类别进行再次聚类,直到无需分类。将本方法应用于西安市2018年2~4月沙尘天气的识别中,结果表明,本方法可有效识别主要沙尘天气。此外,利用本方法可得到沙尘天气典型特征:PM2.5占PM10浓度的比例小于43.5%、PM10浓度高于228μg/m^(3,)符合沙尘天气期间PM10浓度较高且以粗颗粒物为主的物理特征。总体上看,本方法物理基础清晰,可操行性强,适用于大规模数据处理,具有较好的实用价值和应用前景。 展开更多
关键词 沙尘天气识别 k-means 客观识别 PM2.5 PM10
下载PDF
一种基于改进差分进化的K-Means聚类算法研究
18
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 k-means算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 中心优化
下载PDF
基于K-means聚类和图像分割的紫色土发生层边界识别
19
作者 杨凯 慈恩 +2 位作者 刘彬 陈洋洋 谢宇 《土壤学报》 CAS CSCD 北大核心 2024年第4期939-951,共13页
土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像... 土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像分割技术,结合图像的颜色特征(CIELab色彩空间)和纹理特征(Entropy)识别紫色土剖面发生层边界,并与实地划分的结果进行比较。结果表明:(1)CIELab色彩空间的a、b通道和Entropy纹理特征,可以划分出供试剖面的主要发生层(A、B、C)和基岩(R);(2)聚类识别的发生层数量和发生层深度与实地识别的结果基本一致;除Z2剖面的C层和Z6剖面的Ap层聚类识别与实地识别的发生层下边界深度相差较大(分别为13cm和8cm)外,其余发生层下边界深度相差均在3 cm以内;(3)聚类识别的发生层边界形状更为不规则,明显度更为模糊。K-means聚类和图像分割技术实现了紫色土剖面发生层边界的客观识别,可为土壤剖面智能辨识系统的开发提供科学参考。 展开更多
关键词 剖面图像 发生层 k-means 图像分割 颜色 纹理
下载PDF
基于K-means聚类和随机森林的电缆风险评估及修复决策
20
作者 杨帆 王红斌 +3 位作者 方健 何嘉兴 黄柏 王莉 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期892-899,共8页
交联聚乙烯电缆是10 kV配电系统中的重要设备,其安全性至关重要。对电缆的修复决策做出科学判断,有助于提高配电系统的安全性并降低经济成本。鉴于此,本文提出了一种基于K-means聚类和随机森林(Random forest,RF)分类模型的电缆风险评... 交联聚乙烯电缆是10 kV配电系统中的重要设备,其安全性至关重要。对电缆的修复决策做出科学判断,有助于提高配电系统的安全性并降低经济成本。鉴于此,本文提出了一种基于K-means聚类和随机森林(Random forest,RF)分类模型的电缆风险评估及修复决策方法。该方法首先根据电缆的绝缘状态,定义电缆的风险等级和风险程度;然后利用K-means聚类算法对多个老化指标进行聚类以实现风险等级区间的划分,从而建立多老化指标风险矩阵;基于多老化指标风险矩阵,利用综合权重法确定多维老化指标所对应的分类标签;最后基于RF算法建立并训练电缆的修复决策分类模型,输出电缆的修复决策结果。所提方法的平均正确率达到99.70%,实现了电缆快速且可靠的修复决策。 展开更多
关键词 老化指标 风险矩阵 电缆 随机森林 k-means
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部