期刊文献+
共找到27,309篇文章
< 1 2 250 >
每页显示 20 50 100
光伏新能源电能信号游程域模态分解理论与特征提取
1
作者 王学伟 杨江宁 《电力自动化设备》 北大核心 2025年第1期92-98,共7页
高比例光伏新能源接入下的电能信号呈现出强随机、快时变、大波动特性,常导致电能表电能计量严重超差,影响电能交易的公正合理性。针对新能源电能信号敏感特征不清楚、对电能表电能计量影响不明确的问题,建立了游程域映射理论,解决了电... 高比例光伏新能源接入下的电能信号呈现出强随机、快时变、大波动特性,常导致电能表电能计量严重超差,影响电能交易的公正合理性。针对新能源电能信号敏感特征不清楚、对电能表电能计量影响不明确的问题,建立了游程域映射理论,解决了电能信号在游程域的表征问题;提出了游程域模态分解(R-EMD)方法,基于游程完成电流幅度在长持续时间下局部区间的自适应模态分解,得出光伏新能源电能信号的2个全局重要特征;构建了游程域特征参量与特征函数,并提取得到光伏新能源电能信号的4个游程域敏感特征;通过实验验证了游程域敏感特征对电能计量的影响。 展开更多
关键词 光伏新能源 电能计量 电能表误差 模态分解 特征提取
下载PDF
基于多尺度特征提取的层次多标签文本分类方法
2
作者 武子轩 王烨 于洪 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期24-30,共7页
针对现有的特征提取方法忽略文本局部和全局联系的问题,提出了基于多尺度特征提取的层次多标签文本分类方法。首先,设计了多尺度特征提取模块,对不同尺度特征进行捕捉,更好地表示文本语义。其次,将层次特征嵌入文本表示中,得到具有标签... 针对现有的特征提取方法忽略文本局部和全局联系的问题,提出了基于多尺度特征提取的层次多标签文本分类方法。首先,设计了多尺度特征提取模块,对不同尺度特征进行捕捉,更好地表示文本语义。其次,将层次特征嵌入文本表示中,得到具有标签特征的文本语义表示。最后,在标签层次结构的指导下对输入文本构建正负样本,进行对比学习,提高分类效果。在WOS、RCV1-V2、NYT和AAPD数据集上进行对比实验,结果表明,所提模型在评价指标上表现出色,超过了其他主流模型。此外,针对层次分类提出层次Micro-F 1和层次Macro-F 1指标,并对模型效果进行了评价。 展开更多
关键词 层次多标签文本分类 多尺度特征提取 对比学习 层次Micro-F 1 层次Macro-F 1
下载PDF
基于PCA-K-means的卫星遥感图像的颜色特征提取技术 被引量:4
3
作者 赵蔷 解争龙 +1 位作者 李红 李小林 《微电子学与计算机》 CSCD 北大核心 2012年第10期64-68,共5页
结合主成分分析(PCA)和K均值聚类算法(K-means)的特点,本文提出了一种对卫星遥感图像进行颜色特征提取的PCA-K-means算法.该算法去除了图像的R、G、B之间的相关性,在动态聚类的基础上,采用基于区域分类的空间一致性原则合并空间信息,使... 结合主成分分析(PCA)和K均值聚类算法(K-means)的特点,本文提出了一种对卫星遥感图像进行颜色特征提取的PCA-K-means算法.该算法去除了图像的R、G、B之间的相关性,在动态聚类的基础上,采用基于区域分类的空间一致性原则合并空间信息,使得该方法能高效的描述卫星图像的颜色特征.实验结果表明,该方法识别性能好,准确度高,是对多频谱遥感图像的颜色特征提取的一种有效的方法. 展开更多
关键词 PCA k-means 卫星遥感图像 颜色特征提取
下载PDF
基于K-Means和Apriori算法的多层特征提取方法 被引量:3
4
作者 钱慎一 朱艳玲 朱颢东 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期357-362,共6页
根据科技文献的结构特点,论文提出了一种四层挖掘模式,并结合K-means算法和Apriori算法,构建一个新的特征词提取方法——MultiLM-FE方法.该方法首先依据科技文献的结构将其分为4个层次,然后通过K-means聚类对前3层逐层实现特征词提取,... 根据科技文献的结构特点,论文提出了一种四层挖掘模式,并结合K-means算法和Apriori算法,构建一个新的特征词提取方法——MultiLM-FE方法.该方法首先依据科技文献的结构将其分为4个层次,然后通过K-means聚类对前3层逐层实现特征词提取,最后再使用Aprori算法找出第4层的最大频繁项集,并作为第4层的特征词集合.该方法能够解决K-means算法不能自动确定最佳聚类初始点的问题,减少了聚类过程中信息损耗,这使得该方法能够在文献语料库中更加准确地找到特征词,较之以前的方法有很大提升,尤其是在科技文献方面更为适用.实验结果表明,该方法是可行有效的. 展开更多
关键词 科技文献 特征提取 k-means算法 APRIORI算法
下载PDF
面向智能巡检终端的非结构化数据特征提取技术
5
作者 罗劲斌 章坚 +2 位作者 郭启迪 李端姣 李雄刚 《电子设计工程》 2025年第1期100-103,108,共5页
智能巡检终端采集的电力设备数据大多为图像、视频、声音等非结构化数据,具有复杂性、多样性的特征。对上述非结构化数据提取的准确性决定了电力设备的监测能力,为此,面向智能巡检终端中的非结构化数据,提出了一种新的特征提取技术。分... 智能巡检终端采集的电力设备数据大多为图像、视频、声音等非结构化数据,具有复杂性、多样性的特征。对上述非结构化数据提取的准确性决定了电力设备的监测能力,为此,面向智能巡检终端中的非结构化数据,提出了一种新的特征提取技术。分别识别智能巡检终端中数据的图像特征值、视频特征值、声音特征值。以识别结果为基础,对其进行归一化处理,利用K-L变换完成对数据样本的降维处理,实现对智能巡检终端非结构化数据特征的提取。实验结果表明,所提方法提取的结构化数据样本长度始终与智能巡检终端主机所需输配电数据样本长度差距小于0.05×109 MB,提高了非结构化数据特征提取的精准性。 展开更多
关键词 智能巡检终端 非结构化数据 特征提取 K-L变换 数据降维
下载PDF
采用K-means的脑肿瘤磁共振图像分割与特征提取 被引量:19
6
作者 宗晓萍 田伟倩 《计算机工程与应用》 CSCD 北大核心 2020年第3期187-193,共7页
大脑肿瘤分割对于医师判断肿瘤恶化程度非常重要。然而,由于肿瘤的不规则形状、与周围组织的低对比度以及出现位置的不固定,给脑肿瘤的精确分割带来很大的困难。传统的K-means分割方法仅仅利用图像的灰度特征,很难准确分割肿瘤边界。利... 大脑肿瘤分割对于医师判断肿瘤恶化程度非常重要。然而,由于肿瘤的不规则形状、与周围组织的低对比度以及出现位置的不固定,给脑肿瘤的精确分割带来很大的困难。传统的K-means分割方法仅仅利用图像的灰度特征,很难准确分割肿瘤边界。利用灰度共生矩阵提取出的纹理特征,并结合图像几何不变矩特征对分割出的脑肿瘤图像进行特征提取。灰度共生矩阵定义为像素对的联合概率分布,是一个对称矩阵,它不仅反映图像灰度在相邻的方向、相邻间隔、变化幅度的综合信息,也反映了相同的灰度级像素之间的位置分布特征,是计算纹理特征的基础;几何矩(不变矩)具有旋转、平移、尺度等特性,能将图像分解为有限特征值,并且通过对比所提取出的同一病人的肿瘤图像的不变矩参数,可以获得该肿瘤几何形状变化程度。实验结果表明,该方法可以同时从纹理和几何特征对图像特征进行描述,与分别采用灰度共生矩阵和不变矩方法进行特征提取相比较,降低了算法计算量,同时提升了算法的抗噪性。 展开更多
关键词 k-means 特征提取 灰度共生矩阵 不变矩 相关系数
下载PDF
电机轴承故障检测特征提取技术专利综述
7
作者 唐进岭 《防爆电机》 2025年第1期97-100,共4页
从专利角度分析电机轴承故障检测领域中的特征提取技术专利,旨在分析并总结该技术的专利申请趋势、区域、主要申请人,介绍了电机轴承故障检测特征提取技术的重点技术分支和发展历程。通过梳理关键专利文献,探讨了多种特征提取方法。最后... 从专利角度分析电机轴承故障检测领域中的特征提取技术专利,旨在分析并总结该技术的专利申请趋势、区域、主要申请人,介绍了电机轴承故障检测特征提取技术的重点技术分支和发展历程。通过梳理关键专利文献,探讨了多种特征提取方法。最后,指出了未来研究方向,以期推动电机轴承故障检测特征提取技术的进一步发展。 展开更多
关键词 特征提取 轴承 故障检测
下载PDF
基于小波变换和K-means聚类算法的心电信号特征提取 被引量:5
8
作者 王瑞荣 余小庆 +1 位作者 朱广明 王敏 《航天医学与医学工程》 CAS CSCD 北大核心 2016年第5期368-371,共4页
目的研究一种基于小波变换和K-means聚类算法的心电信号特征提取方法,根据特征点信息判断心电是否正常。方法利用小波变换和形态学滤波方法去除工频干扰、肌电干扰和基线漂移等主要的噪声之后,利用K-Means聚类算法提取出心电信号的QRS波... 目的研究一种基于小波变换和K-means聚类算法的心电信号特征提取方法,根据特征点信息判断心电是否正常。方法利用小波变换和形态学滤波方法去除工频干扰、肌电干扰和基线漂移等主要的噪声之后,利用K-Means聚类算法提取出心电信号的QRS波群,P波和T波这3个主要的特征点,实现心电智能诊断。结果实验数据取自MIT-BIH数据库,多次实验结果显示QRS波群的阳性检测度(P+)达到99.68%和灵敏度(Se)达到99.21%,P波和T波的检测准确度分别达91.43%和97.01%。结论相对于其它方法,本文心电特征提取方法准确度较高,具有一定参考价值;在移动医疗和临床医疗方面具有一定实用价值。 展开更多
关键词 心电信号 小波变换 k-means QRS波群 P波 T波
下载PDF
基于K-means和特征提取的植物叶部病害检测与实现 被引量:9
9
作者 李亚文 张军 陈月星 《陕西农业科学》 2021年第6期33-37,41,共6页
针对植物常见叶部病害的检测并提高准确率,提出了基于K-means的图像分割和颜色特征提取的算法。以苹果枯叶病为研究对象,应用K-means算法先进行病斑叶片的图像分割,再提取三阶颜色矩参数,与正常叶片参数进行对比分析;实验测试表明,该方... 针对植物常见叶部病害的检测并提高准确率,提出了基于K-means的图像分割和颜色特征提取的算法。以苹果枯叶病为研究对象,应用K-means算法先进行病斑叶片的图像分割,再提取三阶颜色矩参数,与正常叶片参数进行对比分析;实验测试表明,该方法能较好的识别苹果枯叶病,具有较好的鲁棒性,且准确率较高。 展开更多
关键词 聚类算法 图像分割 颜色矩 特征提取
下载PDF
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术
10
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 k-means算法 反向传播神经网络
下载PDF
基于特征提取和集成学习的个人信用评分方法 被引量:3
11
作者 康海燕 胡成倩 《计算机仿真》 2024年第1期311-320,共10页
在大数据蓬勃发展的今天,信息经济已经深入社会方方面面,个人信用体系建设的重要性越发突出。而传统的信用体系存在覆盖率不足、评价特征维度高、数据孤岛等问题,为了解决以上问题,提出一种基于特征提取和Stacking集成学习的个人信用评... 在大数据蓬勃发展的今天,信息经济已经深入社会方方面面,个人信用体系建设的重要性越发突出。而传统的信用体系存在覆盖率不足、评价特征维度高、数据孤岛等问题,为了解决以上问题,提出一种基于特征提取和Stacking集成学习的个人信用评分方法(PSL-Stacking)。方法首先利用Pearson和Spearman系数对数据进行初始化分析剔除不相关数据,利用LightGBM算法进行特征选择,减少冗余特征对模型的影响;其次选取XGboost、LightGBM、Random Forest以及Huber回归等算法,利用Stacking集成学习技术构造个人信用评分模型。最后,以某电信数据为研究对象,对该上述模型的个人信用评分能力进行验证。实验结果得出上述模型具有很好的预测能力,能够准确的对用户信用进行评分,有效降低企业遭受金融欺诈、团伙套利等问题的风险。 展开更多
关键词 信用评分 特征提取 集成学习 欺诈
下载PDF
基于特征分箱和K-Means算法的用户行为分析方法 被引量:1
12
作者 殷丽凤 路建政 《云南民族大学学报(自然科学版)》 CAS 2024年第2期251-257,共7页
针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.... 针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.其中,基于特征分箱法的RFM模型将变量转化到相似的尺度上并将变量离散化,使得用户分类标签更加清晰,也可依据各类标签分类出不同类型的用户.K-Means算法通过轮廓系数评估聚类算法质量以至于选取最优K值.本文实验分析结果可为运营商提供更加可靠直观的数据,使得运营商可以根据不同用户的不同行为进行市场细分,进而进行精准营销和服务设置. 展开更多
关键词 特征分箱 k-means算法 用户行为 RFM模型 网购
下载PDF
一种参数自适应VMD应用于轴承故障特征提取 被引量:1
13
作者 高淑芝 陈雪峰 张义民 《机械设计与制造》 北大核心 2024年第6期246-249,共4页
针对传统的变分模态分解(VMD)需要预先设置模态个数和惩罚参数,提出了一种基于麻雀搜索算法(SSA)的参数自适应VMD方法。首先,引入一种新的测量指标-相关脉冲,该指标能反映出原始信号与分解模态之间的相关性,并且能有效突出包含丰富信息... 针对传统的变分模态分解(VMD)需要预先设置模态个数和惩罚参数,提出了一种基于麻雀搜索算法(SSA)的参数自适应VMD方法。首先,引入一种新的测量指标-相关脉冲,该指标能反映出原始信号与分解模态之间的相关性,并且能有效突出包含丰富信息的模态。其次,基于相关脉冲指标,采用麻雀搜索算法选择最优VMD分解参数。最后,通过最大相关脉冲指标对模态分量进行分析,利用希尔伯特包络谱进行频谱分析。此外,将故障轴承放在轴承寿命试验台上进行仿真验证,实验结果表明该方法在轴承故障特征提取上具有可行性。 展开更多
关键词 变分模态分解 麻雀搜索算法 相关脉冲 故障特征提取
下载PDF
新小波阈值法与VMD相结合的滚动轴承特征提取 被引量:1
14
作者 孙砚飞 邹方豪 +1 位作者 纪俊卿 许同乐 《机械设计与制造》 北大核心 2024年第3期90-93,99,共5页
针对滚动轴承故障信号弱以及难提取等问题,提出了一种新小波阈值方法与VMD相结合的轴承故障信号特征提取方法。首先,利用一种改进的指数小波阈值函数来优化传统小波降噪方法,克服其存在间断点和恒定偏差等问题;然后,结合VMD提取滚动轴... 针对滚动轴承故障信号弱以及难提取等问题,提出了一种新小波阈值方法与VMD相结合的轴承故障信号特征提取方法。首先,利用一种改进的指数小波阈值函数来优化传统小波降噪方法,克服其存在间断点和恒定偏差等问题;然后,结合VMD提取滚动轴承的有效故障特征;最后,以6205-RS号轴承内圈故障数据作为原始信号进行实验验证。实验结果表明,该方法能够有效提高降噪信号的信噪比,降低均方根误差,保证滚动轴承微弱故障信号特征提取的完整性和有效性。 展开更多
关键词 滚动轴承 新小波阈值 变分模态分解 特征提取
下载PDF
基于特征提取的电力客户服务大数据溯源模型 被引量:1
15
作者 于亮 钟宏伟 +2 位作者 李海涛 刘志欣 苏姗姗 《自动化技术与应用》 2024年第9期101-104,共4页
为提高数据溯源算法的运行效率,基于特征提取方法提出电力客户服务大数据溯源模型。定义数据的基因组,查找数据库内的任意两个存在血缘关系的数据,以此建立数据染色体追溯模型;获取电力数据中的四类特征值,建立电力数据多次遗传的转移矩... 为提高数据溯源算法的运行效率,基于特征提取方法提出电力客户服务大数据溯源模型。定义数据的基因组,查找数据库内的任意两个存在血缘关系的数据,以此建立数据染色体追溯模型;获取电力数据中的四类特征值,建立电力数据多次遗传的转移矩阵,基于特征提取构造电力大数据溯源路径;得出大数据溯源算法,构建电力客户服务大数据溯源模型。实验结果显示,特征提取算法在模型层数以及数据量相同时,溯源所需时间最短,算法运行速度最快。 展开更多
关键词 特征提取 电力客户服务 数据库 大数据 数据溯源算法
下载PDF
基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法 被引量:2
16
作者 林慧斌 王洪畅 习慈羊 《振动工程学报》 EI CSCD 北大核心 2024年第3期485-496,共12页
压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩... 压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法。针对无噪声的故障信号样本难以获取的问题,提出一种利用故障机理构建数据集的方法,利用该仿真数据集训练得到的模型适用于不同工况下的实测轴承信号。构造网络层数由所需要的信号压缩率确定、隐含层与原信号的频率呈对应关系的深度卷积去噪自编码网络。截取训练完备的编码子网络(即深度卷积测量网络)代替传统的观测矩阵对滚动轴承振动信号进行压缩测量,实现压缩域的故障特征提取。仿真分析验证了所提数据集构造方法及压缩域特征提取方法的有效性。滚动轴承实验信号分析进一步验证了采用所提方法训练得到的深度卷积测量网络具有很好的泛化性,且能够在压缩率远低于传统压缩感知方法的情况下有效地提取轴承故障特征成分并进行故障诊断。 展开更多
关键词 故障诊断 滚动轴承 故障特征提取 压缩感知 深度卷积测量网络
下载PDF
基于非监督对比学习的火星地形特征提取方法 被引量:1
17
作者 杨博 魏翔 +1 位作者 于贺 刘超凡 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期1842-1849,共8页
火星表面地形智能识别对火星车自主探测具有重要意义,火星地形图像的特征提取方法目前主要分为传统的浅层视觉特征提取和基于监督学习的深层特征提取2类。找回丢失图像信息、获取大量带标签数据是要解决的关键问题。为此,提出一种基于... 火星表面地形智能识别对火星车自主探测具有重要意义,火星地形图像的特征提取方法目前主要分为传统的浅层视觉特征提取和基于监督学习的深层特征提取2类。找回丢失图像信息、获取大量带标签数据是要解决的关键问题。为此,提出一种基于非监督对比学习的火星地形特征识别方法,通过建立图像字典数据集,用“问询”和“编码”2组神经网络分别将单个图像与“字典”数据集中其他图像进行对比,用相似度泛函作为损失函数对网络进行训练,从而实现对火星地形图像的特征识别。所提方法还具有对训练数据集之外的新类型地形图像识别能力,后续识别分类优越性突出。仿真结果表明:所提方法识别准确率为85.4%,对新类型地形图像的识别准确率为84.5%。 展开更多
关键词 对比学习 非监督 深度学习 火星地形 特征提取
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
18
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-means聚类 特征空间增强 mixup算法
下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取 被引量:2
19
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
下载PDF
基于多阶段特征提取的鱼类识别研究
20
作者 吕俊霖 陈作志 +2 位作者 李碧龙 蔡润基 高月芳 《南方水产科学》 CAS CSCD 北大核心 2024年第1期99-109,共11页
鱼类自动识别在海洋生态学、水产养殖等领域应用广泛。受光照变化、目标相似、遮挡及类别分布不均衡等因素影响,鱼类精准自动识别极具挑战性。提出了一种基于多阶段特征提取网络(Multi-stage Feature Extraction Network,MF-Net)模型进... 鱼类自动识别在海洋生态学、水产养殖等领域应用广泛。受光照变化、目标相似、遮挡及类别分布不均衡等因素影响,鱼类精准自动识别极具挑战性。提出了一种基于多阶段特征提取网络(Multi-stage Feature Extraction Network,MF-Net)模型进行鱼类识别。该模型首先对图片作弱增强预处理,以提高模型的计算效率;然后采用多阶段卷积特征提取策略,提升模型对鱼类细粒度特征的提取能力;最后通过标签平滑损失计算以缓解数据的不平衡性。为验证模型的性能,构建了一个500类、含32768张图片的鱼类数据集,所建模型在该数据集上的准确率达到86.8%,优于现有的主流目标识别方法。利用公开的蝴蝶数据集对该模型进行泛化性能验证,多组消融实验进一步验证了所提算法的有效性。 展开更多
关键词 鱼类识别 特征提取网络模型 标签平滑 长尾识别
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部