期刊文献+
共找到284篇文章
< 1 2 15 >
每页显示 20 50 100
K-Medoids聚类算法的计算机信息处理技术研究
1
作者 余洋 《信息与电脑》 2024年第11期23-25,共3页
当前计算机信息处理技术在大规模数据集上存在计算效率低下、对噪声和异常值敏感等问题。为了解决这些问题,本文提出了一种改进的K-medoids聚类算法。该方法通过优化初始中心点的选择和更新策略,提高了算法的收敛速度和稳定性,并引入基... 当前计算机信息处理技术在大规模数据集上存在计算效率低下、对噪声和异常值敏感等问题。为了解决这些问题,本文提出了一种改进的K-medoids聚类算法。该方法通过优化初始中心点的选择和更新策略,提高了算法的收敛速度和稳定性,并引入基于密度的聚类评价指标,提高了对噪声数据的鲁棒性。通过在真实和人工数据集上的实验验证,证明了本方法在提高聚类效果和处理大规模数据方面的有效性。 展开更多
关键词 k-medoids 信息处理 聚类分析 技术优化
下载PDF
基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测 被引量:2
2
作者 王宇飞 杜桐 +3 位作者 边伟国 张钊 刘慧婷 杨丽君 《中国电力》 CSCD 北大核心 2024年第6期121-130,共10页
多用户电力负荷预测是指根据历史负荷数据对多个用户或区域的电力负荷进行预测,可使电网企业掌握不同用户或区域的电力需求,以便更好地开展规划和实施调度优化等。然而由于各用户呈现出复杂多样的用电行为,采用传统方法难以进行统一建... 多用户电力负荷预测是指根据历史负荷数据对多个用户或区域的电力负荷进行预测,可使电网企业掌握不同用户或区域的电力需求,以便更好地开展规划和实施调度优化等。然而由于各用户呈现出复杂多样的用电行为,采用传统方法难以进行统一建模并实现快速准确预测。为此,构建了一种基于DTW Kmedoids与VMD-多分支神经网络的多用户短期负荷预测模型。首先,采用DTW K-medoids法进行用户负荷数据聚类,利用动态时间弯曲(dynamic time warping,DTW)计算数据间的距离,取代K-medoids算法中传统的欧氏距离度量方式,以改善多用户负荷聚类的效果;在此基础上,为充分表征负荷历史数据的长短期时序依赖特征,建立了一种基于变分模态分解(variational mode decomposition,VMD)-多分支神经网络模型的并行预测方法,用于多用户短期负荷预测;最后,使用某地区20个用户365天的负荷数据进行聚类、训练和测试实验,结果显示该模型结果的平均绝对误差和均方根误差等指标均较对比模型有较大幅度降低,表明该方法可有效表征多类用户的用电行为,提升多用户负荷预测效率和精度。 展开更多
关键词 多用户 负荷预测 DTW k-medoids聚类 变分模态分解(VMD) 多分支神经网络
下载PDF
基于k-Medoids聚类和深度学习的分布式短期负荷预测
3
作者 杨玺 陈爽 +2 位作者 彭子睿 高镇 王安龙 《微型电脑应用》 2024年第1期80-83,共4页
为了获得较高的预测精度,提出一种基于k-Medoids聚类和深度学习的分布式短期负荷预测。基于配电变压器的能耗分布,采用k-Medoids聚类将电力负荷数据集中的数据进行聚类,并构建基于深度神经网络(DNN)和长短期记忆网络(LSTM)的短期负荷预... 为了获得较高的预测精度,提出一种基于k-Medoids聚类和深度学习的分布式短期负荷预测。基于配电变压器的能耗分布,采用k-Medoids聚类将电力负荷数据集中的数据进行聚类,并构建基于深度神经网络(DNN)和长短期记忆网络(LSTM)的短期负荷预测模型。在拥有1000个变电站数据子集的武汉配电网络系统中进行验证,验证结果表明,所提的kMedoids聚类可以在减少44%训练时间的基础上拟合出单个变压器预测模型的平均参数,且DNN和LSTM预测模型分别以7.32%和11.15%的平均绝对百分比误差(MAPE)跟踪实际负荷。 展开更多
关键词 短期负荷预测 k-medoids聚类 深度学习 深度神经网络 长短期记忆网络
下载PDF
基于K-medoids聚类算法的梯级水利枢纽信息资源整合方法
4
作者 刘浩杰 冯庆 +2 位作者 梁建波 何成威 吴鼎 《水利技术监督》 2024年第7期16-19,共4页
在梯级水利枢纽信息资源整合时,传统的算法只能对单源信息进行聚类分析,资源整合效率低。针对上述问题,文章提出基于K-medoids聚类算法的梯级水利枢纽信息资源整合方法。建立一个完善的整合机制,设计水利枢纽信息资源整合模型,该模型能... 在梯级水利枢纽信息资源整合时,传统的算法只能对单源信息进行聚类分析,资源整合效率低。针对上述问题,文章提出基于K-medoids聚类算法的梯级水利枢纽信息资源整合方法。建立一个完善的整合机制,设计水利枢纽信息资源整合模型,该模型能全面有效地整合各种信息资源,确定水利枢纽信息资源的利用系数,通过评估和调整该系数可以优化信息资源的配置和使用。实验证明,该方法可以提高资源整合效率,应用效果良好,具有实际应用价值。 展开更多
关键词 k-medoid聚类算法 水利枢纽信息 资源整合 利用系数
下载PDF
基于K-medoids-NCA-SMOTE-BSVM融合模型的网络交易平台高质量数据资源识别研究
5
作者 倪渊 李思远 +2 位作者 徐磊 张健 房津玉 《运筹与管理》 CSSCI CSCD 北大核心 2023年第11期87-93,I0040,I0041,共9页
随着数据服务形态不断衍生,数据资源作为一种新兴生产要素,其交易流通需求呈现爆发式增长。如何从海量数据中识别高质量数据资源,挖掘要素价值,成为数据交易平台获取竞争优势以及提升要素配置效率的关键。本文旨在发现平台交易情境下高... 随着数据服务形态不断衍生,数据资源作为一种新兴生产要素,其交易流通需求呈现爆发式增长。如何从海量数据中识别高质量数据资源,挖掘要素价值,成为数据交易平台获取竞争优势以及提升要素配置效率的关键。本文旨在发现平台交易情境下高质量数据形成的关键因素,提出从大规模、异质数据资源中高效识别高质量数据的方法。首先,基于高质量数据形成过程,构建“固有品质-商品表征”二维识别指标体系;然后,提出K-medoids-NCA-SMOTE-BSVM融合模型,对高、中、低三类不同质量数据进行分类预测;最后,收集真实数据交易平台的API交易数据,开展实证研究。结果显示:相比SVM,WOA-SVM,PSO-SVM,MLP和CNN等方法,K-medoids-NCA-SMOTE-BSVM模型在预测准确率和训练时间方面,均有良好的性能表现。本文提出的识别指标及分类模型,为平台经济下数据质量判断与预测提供了依据,对产品视角下数据质量标准制定以及数据交易定价优化具有一定实践意义。 展开更多
关键词 数据交易平台 高质量数据 k-medoids-NCA-SMOTE-BSVM 多模型集成
下载PDF
基于K-Medoids聚类与栅格法提取负荷曲线特征的CNN-LSTM短期负荷预测 被引量:10
6
作者 季玉琦 严亚帮 +4 位作者 和萍 刘小梅 李从善 赵琛 范嘉乐 《电力系统保护与控制》 EI CSCD 北大核心 2023年第18期81-93,共13页
高效准确的短期负荷预测是电力系统安全稳定与经济运行的重要保障。针对峰荷与谷荷预测误差较大的问题,提出一种基于栅格法提取负荷曲线特征的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory n... 高效准确的短期负荷预测是电力系统安全稳定与经济运行的重要保障。针对峰荷与谷荷预测误差较大的问题,提出一种基于栅格法提取负荷曲线特征的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNN-LSTM)混合预测模型。首先,采用K-Medoids算法对日负荷曲线聚类,将各聚类中心作为典型代表日负荷曲线。采用栅格法将典型代表日负荷曲线划分为若干个区间并依次编号,提取负荷曲线的特征。然后,将各典型代表日负荷曲线特征与对应负荷类型历史数据重构成新的特征集输入到CNN-LSTM混合神经网络中。利用CNN挖掘数据间的特征形成新的特征向量,再将该特征向量输入到LSTM中进行预测。最后,以美国新英格兰地区2012至2013年电力负荷数据集为例进行仿真验证。结果表明,所提方法在不同日期下的负荷预测精度均有所提升,并且在提升日负荷平均预测精度的同时,有效提升了峰荷、谷荷的预测精度。 展开更多
关键词 短期负荷预测 k-medoids聚类分析 负荷曲线特征提取 卷积神经网络 长短期记忆网络
下载PDF
基于K-medoids聚类算法的多源信息数据集成算法 被引量:6
7
作者 祝鹏 郭艳光 《吉林大学学报(理学版)》 CAS 北大核心 2023年第3期665-670,共6页
针对因多源信息数据源域相似性较低、不易确定导致的集成难度较大问题,提出一种基于K-medoids聚类算法的集成方法.先将多源数据的聚类过程视为迁移学习过程,确定初始样本的权重值,记录训练样本每次迭代时权重和损失期望值的学习特点,再... 针对因多源信息数据源域相似性较低、不易确定导致的集成难度较大问题,提出一种基于K-medoids聚类算法的集成方法.先将多源数据的聚类过程视为迁移学习过程,确定初始样本的权重值,记录训练样本每次迭代时权重和损失期望值的学习特点,再利用特点参数判定数据属于源域还是目标域;然后将集成算法聚类转化为多样化的域值标记问题,使数据具有聚类特性后,再分别计算源域和目标域中待集成数据间的权重因子,利用权重因子覆盖特性判定二者间的交互信息量,对信息量较高的数据进行集成,以确保集成的成功率.仿真实验结果表明,该算法无论是在稳定、数目较少的数据集,还是在紊乱、数目较多较杂的数据集下,都能实现高效集成,并且二次集成次数较少,整体耗用较低. 展开更多
关键词 k-medoids聚类算法 多源数据 源域 目标域 交互信息量
下载PDF
基于密度权重的优化差分隐私K-medoids聚类算法 被引量:1
8
作者 王圣节 巫朝霞 《智能计算机与应用》 2023年第5期126-130,139,共6页
K-medoids算法作为数据挖掘中重要的一种聚类算法,与差分隐私保护的结合有助于信息数据的安全,原有的基于差分隐私保护的K-medoids聚类算法在初始中心点的选择上仍然具有盲目性和随机性,在一定程度上降低了聚类效果。本文针对这一问题... K-medoids算法作为数据挖掘中重要的一种聚类算法,与差分隐私保护的结合有助于信息数据的安全,原有的基于差分隐私保护的K-medoids聚类算法在初始中心点的选择上仍然具有盲目性和随机性,在一定程度上降低了聚类效果。本文针对这一问题提出一种基于密度权重的优化差分隐私K-medoids(DWDPK-medoids)聚类算法,通过引入数据密度权重知识,确定算法的初始中心点和聚类数,以提高聚类效果和稳定性。安全性分析表明,算法满足ε-差分隐私保护;通过对UCI真实数据集的仿真实验表明,相同隐私预算下该算法比DPK-medoids具有更好的聚类效果和稳定性。 展开更多
关键词 数据挖掘 差分隐私 k-medoids算法 密度权重
下载PDF
基于LS-DTW和优化k-medoids的磨音信号聚类分析
9
作者 万俊良 罗小燕 邓涛 《噪声与振动控制》 CSCD 北大核心 2023年第6期109-116,共8页
磨音信号是反映磨机运行状态的一个重要参数,准确区分不同状态下的磨机信号将直接影响后续磨机运行参数优化的结果。通过聚类算法可以对磨音信号进行分类,为使磨音信号聚类效果更优,不仅需要类内距离小,还需要类间距离尽可能大。由此提... 磨音信号是反映磨机运行状态的一个重要参数,准确区分不同状态下的磨机信号将直接影响后续磨机运行参数优化的结果。通过聚类算法可以对磨音信号进行分类,为使磨音信号聚类效果更优,不仅需要类内距离小,还需要类间距离尽可能大。由此提出一种基于局部稳定性加权动态时间规划(Local Stability Dynamic Time Warping,LSDTW)和优化k-medoids的磨音信号聚类方法。首先为克服动态时间规划(Dynamic Time Warping,DTW)得到的计算结果对噪声高度敏感的缺点,使用局部稳定性估计对DTW加权计算来降低噪声对计算结果的影响,其次针对k-medoids聚类需要多次计算才能确定聚类个数的不足,提出使用异常迭代模式(Abnormal Pattern,AP)优化k-medoids方法选取代表性的初始集群中心。采用优化k-medoids方法对LS-DTW的结果进行聚类分析,以平均轮廓系数作为评价标准,对比LS-DTW-k-medoids、DTW-k-medoids、DTW-优化k-medoids、k-means++算法效果可知,经本文方法聚类后,类内紧致性更优。 展开更多
关键词 声学 磨音信号 LS-DTW k-medoids 特征提取
下载PDF
基于K-medoids聚类算法的异常低压台区线损识别方法研究 被引量:1
10
作者 吕家慧 《信息与电脑》 2023年第24期61-63,共3页
在电力系统中,设备老化、技术缺陷等原因容易导致低压台区线损异常,影响运行。为此,文章基于K-medoids聚类算法,探讨一种用于识别异常低压台区线损的方法,阐述技术原理,通过聚类分析异常低压线损数据,发现特征,实现准确识别和定位。结... 在电力系统中,设备老化、技术缺陷等原因容易导致低压台区线损异常,影响运行。为此,文章基于K-medoids聚类算法,探讨一种用于识别异常低压台区线损的方法,阐述技术原理,通过聚类分析异常低压线损数据,发现特征,实现准确识别和定位。结果表明,该方法可较好地识别异常低压台区线损,并具有高精度。基于K-medoids聚类算法的异常低压台区线损识别方法提供了一种高效、准确的识别工具,为电力系统管理者及时解决异常低压问题提供了技术调节方式。 展开更多
关键词 k-medoids聚类算法 异常低压台区 线损识别方法
下载PDF
基于特征权重与K-Medoids算法结合的非均衡数据处理方法
11
作者 杨栋 程科 +1 位作者 张晨 张瑞祥 《计算机与数字工程》 2023年第6期1338-1342,共5页
目前处理非均衡数据的方法多是以重采样方法来延伸的,传统的方法在解决非均衡数据分类问题时会使样本数据分类的精确度偏向于多数类样本,而且没有解决好类内不均衡的问题,未将样本数据的特征权重考虑到分类算法或者采样方法中。因此论... 目前处理非均衡数据的方法多是以重采样方法来延伸的,传统的方法在解决非均衡数据分类问题时会使样本数据分类的精确度偏向于多数类样本,而且没有解决好类内不均衡的问题,未将样本数据的特征权重考虑到分类算法或者采样方法中。因此论文提出了一种基于特征权重值与K-Medoids算法相结合的欠采样方法,这种方法解决了之前提出的问题,抽样得到的数据更有利于决策处理,从而使得分类器对不平衡数据的分类性能有所提高。通过实验表明,论文提出的方法与传统的随机欠采样方法相比,在处理相同标准数据集时具有更好分类效果,显著提高了数据集中各类的分类精度。 展开更多
关键词 非均衡数据集 特征权重 k-medoids 欠采样
下载PDF
基于粒计算的K-medoids聚类算法 被引量:39
12
作者 马箐 谢娟英 《计算机应用》 CSCD 北大核心 2012年第7期1973-1977,共5页
传统K-medoids聚类算法的聚类结果随初始中心点不同而波动,且计算复杂度较高不适于处理大规模数据集;快速K-medoids聚类算法通过选择合适的初始聚类中心改进了传统K-medoids聚类算法,但是快速K-medoids聚类算法的初始聚类中心有可能位... 传统K-medoids聚类算法的聚类结果随初始中心点不同而波动,且计算复杂度较高不适于处理大规模数据集;快速K-medoids聚类算法通过选择合适的初始聚类中心改进了传统K-medoids聚类算法,但是快速K-medoids聚类算法的初始聚类中心有可能位于同一类簇。为克服传统K-medoids聚类算法和快速K-medoids聚类算法的缺陷,提出一种基于粒计算的K-medoids聚类算法。算法引入粒度概念,定义新的样本相似度函数,基于等价关系产生粒子,根据粒子包含样本多少定义粒子密度,选择密度较大的前K个粒子的中心样本点作为K-medoids聚类算法的初始聚类中心,实现K-medoids聚类。UCI机器学习数据库数据集以及随机生成的人工模拟数据集实验测试,证明了基于粒计算的K-medoids聚类算法能得到更好的初始聚类中心,聚类准确率和聚类误差平方和优于传统K-medoids和快速K-medoids聚类算法,具有更稳定的聚类结果,且适用于大规模数据集。 展开更多
关键词 传统k-medoids聚类算法 快速k-medoids聚类算法 粒计算 等价关系 聚类
下载PDF
基于全覆盖粒度K-medoids算法的文本聚类及综合性能评估
13
作者 石永鑫 《江苏通信》 2023年第6期75-77,共3页
为了弥补K-medoids算法容易引起收敛过程产生局部极小值问题,结合全覆盖粒度方面考虑,设计了一种基于全覆盖粒度K-medoids算法的文本聚类及其综合性能综合评估方法。以全覆盖粒计算作为参考依据,先计算出各文档特征词权重占比。通过Sing... 为了弥补K-medoids算法容易引起收敛过程产生局部极小值问题,结合全覆盖粒度方面考虑,设计了一种基于全覆盖粒度K-medoids算法的文本聚类及其综合性能综合评估方法。以全覆盖粒计算作为参考依据,先计算出各文档特征词权重占比。通过Single Pass聚类算法完成样本集的聚类计算,获得粒度重要度指标,对剩余样本进行重新分配获得最近聚类中心,最终确保各对象与类簇中心距离达到一个稳定值。研究结果表明:全覆盖粒方法构建的K-medoids聚类算法可以实现聚类精度的显著提升。 展开更多
关键词 文本聚类 k-medoids算法 全覆盖粒度 性能评估
下载PDF
基于蚁群优化K-medoids的变电站特性聚类研究 被引量:1
14
作者 刘建华 孟颖 谭智 《电气技术》 2012年第2期6-10,共5页
为建立合适的变电站负荷模型,将聚类方法引入到变电站负荷特性分析,提出了一种基于蚁群优化K-medoids的综合聚类算法。该综合算法是K-medoids算法对蚁群的历史最优位置进行聚类分析,蚁群算法全局搜索能力强,克服了K-medoids算法易陷入... 为建立合适的变电站负荷模型,将聚类方法引入到变电站负荷特性分析,提出了一种基于蚁群优化K-medoids的综合聚类算法。该综合算法是K-medoids算法对蚁群的历史最优位置进行聚类分析,蚁群算法全局搜索能力强,克服了K-medoids算法易陷入局部最优的缺点,提高了聚类的准确率。最后通过变电站特性聚类实例,验证了综合算法在变电站特性聚类的可行性和有效性。 展开更多
关键词 蚁群优化k-medoids 蚁群算法 k-medoids算法 负荷特性 聚类分析
下载PDF
基于K-Medoids聚类的改进KNN文本分类算法 被引量:25
15
作者 罗贤锋 祝胜林 +1 位作者 陈泽健 袁玉强 《计算机工程与设计》 CSCD 北大核心 2014年第11期3864-3867,3937,共5页
为有效提高传统KNN算法(K最近邻算法)在海量数据的分类效率,分析传统KNN算法的分类过程,提出基于K-Medoids聚类的改进KNN算法。利用K-Medoids算法对文本训练集进行聚类,把文本训练集分成相似度较高的簇;根据待分类文本与簇的相对位置,... 为有效提高传统KNN算法(K最近邻算法)在海量数据的分类效率,分析传统KNN算法的分类过程,提出基于K-Medoids聚类的改进KNN算法。利用K-Medoids算法对文本训练集进行聚类,把文本训练集分成相似度较高的簇;根据待分类文本与簇的相对位置,对文本训练集进行裁剪,解决传统KNN算法在文本训练集过大时速度慢的问题。分析与实验结果表明,该裁剪方法能够合理有效地裁剪文本训练集,提高了KNN算法的运行效率和分类能力。 展开更多
关键词 文本分类 隶属度 K最近邻 样本裁剪 k-medoids聚类
下载PDF
基于MapReduce的K-Medoids并行算法 被引量:33
16
作者 张雪萍 龚康莉 赵广才 《计算机应用》 CSCD 北大核心 2013年第4期1023-1025,1035,共4页
为了解决传统K-Medoids聚类算法在处理海量数据信息时所面临的内存容量和CPU处理速度的瓶颈问题,在深入研究K-Medoids算法的基础之上,提出了基于MapReduce编程模型的K-Medoids并行化算法思想。Map函数部分的主要任务是计算每个数据对象... 为了解决传统K-Medoids聚类算法在处理海量数据信息时所面临的内存容量和CPU处理速度的瓶颈问题,在深入研究K-Medoids算法的基础之上,提出了基于MapReduce编程模型的K-Medoids并行化算法思想。Map函数部分的主要任务是计算每个数据对象到簇类中心点的距离并(重新)分配其所属的聚类簇;Reduce函数部分的主要任务是根据Map部分得到的中间结果,计算出新簇类的中心点,然后作为中心点集给下一次MapReduce过程使用。实验结果表明:运行在Hadoop集群上的基于MapReduce的K-Medoids并行化算法具有较好的聚类结果和可扩展性,对于较大的数据集,该算法得到的加速比更接近于线性。 展开更多
关键词 k-medoids 云计算 MAPREDUCE 并行计算 HADOOP
下载PDF
基于距离不等式的K-medoids聚类算法 被引量:15
17
作者 余冬华 郭茂祖 +3 位作者 刘扬 任世军 刘晓燕 刘国军 《软件学报》 EI CSCD 北大核心 2017年第12期3115-3128,共14页
研究加速K-medoids聚类算法,首先以PAM(partitioning around medoids)、TPAM(triangular inequality elimination criteria PAM)算法为基础给出两个加速引理,并基于中心点之间距离不等式提出两个新加速定理.同时,以O(n+K^2)额外内存空... 研究加速K-medoids聚类算法,首先以PAM(partitioning around medoids)、TPAM(triangular inequality elimination criteria PAM)算法为基础给出两个加速引理,并基于中心点之间距离不等式提出两个新加速定理.同时,以O(n+K^2)额外内存空间开销辅助引理、定理的结合而提出加速SPAM(speed up PAM)聚类算法,使得K-medoids聚类算法复杂度由O(K(n-K)~2)降低至O((n-K)~2).在实际及人工模拟数据集上的实验结果表明:相对于PAM,TPAM,FKMEDOIDS(fast K-medoids)等参考算法均有改进,运行时间比PAM至少提升0.828倍. 展开更多
关键词 数据挖掘 聚类算法 k-medoids 距离不等式
下载PDF
一种高效的K-medoids聚类算法 被引量:47
18
作者 夏宁霞 苏一丹 覃希 《计算机应用研究》 CSCD 北大核心 2010年第12期4517-4519,共3页
针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实... 针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实验结果表明,相对于传统的K-medoids算法,新算法可以提高聚类质量,有效缩短计算时间。 展开更多
关键词 聚类 k-medoids算法 中心微调 增量候选
下载PDF
基于多核平台并行K-Medoids算法研究 被引量:9
19
作者 李静滨 杨柳 华蓓 《计算机应用研究》 CSCD 北大核心 2011年第2期498-500,共3页
分析K-Medoids算法的内在并行性,设计一个适合多核平台的并行算法,并利用OpenMP进行实验。实验结果表明,并行算法对多核环境有很好的适应性,在双核及四核计算机上均获得了较好的加速比与运行效率。
关键词 多核 k-medoids算法 并行算法 OPENMP
下载PDF
一种基于ACO的K-medoids聚类算法 被引量:9
20
作者 孟颖 罗可 +1 位作者 姚丽娟 王琳 《计算机工程与应用》 CSCD 2012年第16期136-139,152,共5页
K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率... K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率高等特点。在K-medoids聚类算法的基础上,借鉴ACO算法的优点,提出了一种新的聚类算法,它提高了聚类的准确率,算法的稳定性也比较高。通过仿真实验,验证了算法的可行性和先进性。 展开更多
关键词 蚁群优化算法(ACO) 聚类分析 k-medoids算法
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部