期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm
1
作者 Song Wang Fei Xie +3 位作者 Fengye Yang Shengxuan Qiu Chuang Liu Tong Li 《Energy Engineering》 EI 2023年第10期2273-2285,共13页
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t... Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding. 展开更多
关键词 Transformer winding frequency response analysis(FRA)method k-nearest neighbor(knn) disc space variation(DSV)
下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
2
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 Empirical mode decomposition(EMD) k-nearest neighbor(knn) principal component analysis(PCA) time series
下载PDF
Fault Diagnosis in Robot Manipulators Using SVM and KNN 被引量:1
3
作者 D.Maincer Y.Benmahamed +2 位作者 M.Mansour Mosleh Alharthi Sherif S.M.Ghonein 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1957-1969,共13页
In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully det... In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work.For both classifiers,the torque,the position and the speed of the manipulator have been employed as the input vector.However,it is to mention that a large database is needed and used for the training and testing phases.The SVM method used in this paper is based on the Gaussian kernel with the parametersγand the penalty margin parameter“C”,which were adjusted via the PSO algorithm to achieve a maximum accuracy diagnosis.Simulations were carried out on the model of a Selective Compliance Assembly Robot Arm(SCARA)robot manipulator,and the results showed that the Particle Swarm Optimization(PSO)increased the per-formance of the SVM algorithm with the 96.95%accuracy while the KNN algo-rithm achieved a correlation up to 94.62%.These results showed that the SVM algorithm with PSO was more precise than the KNN algorithm when was used in fault diagnosis on a robot manipulator. 展开更多
关键词 Support Vector Machine(SVM) Particle Swarm Optimization(PSO) k-nearest neighbor(knn) fault diagnosis manipulator robot(SCARA)
下载PDF
Characteristics,classification and KNN-based evaluation of paleokarst carbonate reservoirs:A case study of Feixianguan Formation in northeastern Sichuan Basin,China
4
作者 Yang Ren Wei Wei +3 位作者 Peng Zhu Xiuming Zhang Keyong Chen Yisheng Liu 《Energy Geoscience》 2023年第3期113-126,共14页
The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and frac... The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising. 展开更多
关键词 Carbonate reservoir Reservoir type Cluster analysis k-nearest neighbor(knn) Feixianguan Formation Sichuan basin
下载PDF
基于k-最近邻图的小样本KNN分类算法 被引量:27
5
作者 刘应东 牛惠民 《计算机工程》 CAS CSCD 北大核心 2011年第9期198-200,共3页
提出一种基于k-最近邻图的小样本KNN分类算法。通过划分k-最近邻图,形成多个相似度较高的簇,根据簇内已有标记的数据对象来标识同簇中未标记的数据对象,同时剔除原样本集中的噪声数据,从而扩展样本集,利用该新样本集对类标号未知数据对... 提出一种基于k-最近邻图的小样本KNN分类算法。通过划分k-最近邻图,形成多个相似度较高的簇,根据簇内已有标记的数据对象来标识同簇中未标记的数据对象,同时剔除原样本集中的噪声数据,从而扩展样本集,利用该新样本集对类标号未知数据对象进行类别标识。采用标准数据集进行测试,结果表明该算法在小样本情况下能够提高KNN的分类精度,减小最近邻阈值k对分类效果的影响。 展开更多
关键词 knn算法 k-最近邻图 小样本 图划分 分类算法
下载PDF
基于KNN图的空间离群点挖掘算法 被引量:3
6
作者 张忠平 徐晓云 王培 《计算机工程》 CAS CSCD 北大核心 2011年第4期37-39,共3页
空间数据集中离群数据与正常数据之间的非空间属性值相差较大。针对该情况,提出一种基于K-最邻近(KNN)图的空间离群点挖掘算法。该算法通过所有对象的K近邻关系构造KNN图,将相邻对象非空间属性值的差作为2个对象点间的边权值,利用裁边... 空间数据集中离群数据与正常数据之间的非空间属性值相差较大。针对该情况,提出一种基于K-最邻近(KNN)图的空间离群点挖掘算法。该算法通过所有对象的K近邻关系构造KNN图,将相邻对象非空间属性值的差作为2个对象点间的边权值,利用裁边策略去掉权值较高的边,从而识别出空间离群点和离群区域。实验结果表明,该算法的时间性能优于POD算法。 展开更多
关键词 空间离群点 K-最邻近图 非空间属性值
下载PDF
一种适用于轴承故障诊断半监督学习分类的多层图卷积注意力融合网络
7
作者 魏春虎 程峰 +1 位作者 曾玉海 杨世飞 《机电工程》 CAS 北大核心 2024年第8期1364-1375,共12页
图卷积网络的平滑运行会导致其无法通过深度网络堆叠捕获深层信息,为了解决这个问题,提出了一种适用于滚动轴承故障诊断半监督学习分类的多层图卷积注意力融合网络(MGCAN)。首先,采用频域构图法将数据转换为图模型,捕获了数据的内在结... 图卷积网络的平滑运行会导致其无法通过深度网络堆叠捕获深层信息,为了解决这个问题,提出了一种适用于滚动轴承故障诊断半监督学习分类的多层图卷积注意力融合网络(MGCAN)。首先,采用频域构图法将数据转换为图模型,捕获了数据的内在结构信息,将构建好的图数据输入网络,逐层提取特征信息,从浅层到深层逐步加深对数据特征的理解;然后,对每一层图卷积信息进行了有序拼接,同时引入了图注意力机制,使网络能够自动关注对分类任务比较重要的信息,从而提高了网络的性能和鲁棒性;最终,通过迭代学习,网络能够不断优化模型参数,对故障信息进行了准确识别;对不同工作条件下的滚动轴承进行了多次实验,并将该方法与传统的基于深度学习的方法进行了分析比较。研究结果表明:即使在标记数据只有10%的前提下,采用该网络依旧能够达到88%以上的识别准确度,并且适用于匀速和变速等不同的工况。上述结果证明,在选择适当方法保留多层图卷积中的有用信息后,深度图卷积网络可以成为诊断滚动轴承故障的一大利器。 展开更多
关键词 轴承故障诊断 多层图卷积注意力融合网络 多层图卷积信息 图注意力机制 k-近邻图 深度学习 识别准确度
下载PDF
Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques
8
作者 Ahsan Wajahat Jingsha He +4 位作者 Nafei Zhu Tariq Mahmood Tanzila Saba Amjad Rehman Khan Faten S.A.lamri 《Computers, Materials & Continua》 SCIE EI 2024年第4期651-673,共23页
The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capable... The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capableof automatically detecting andmitigatingmalicious activities in Android applications(apps).Such technologies arecrucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world.Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitationsthey require substantial computational resources and are prone to a high frequency of false positives.This meansthat while attempting to identify security breaches,these methods often consume considerable processing powerand mistakenly flag benign activities as malicious,leading to inefficiencies and reduced reliability in malwaredetection.The proposed approach includes a data preprocessing step that removes duplicate samples,managesunbalanced datasets,corrects inconsistencies,and imputes missing values to ensure data accuracy.The Minimaxmethod is then used to normalize numerical data,followed by feature vector extraction using the Gain ratio andChi-squared test to identify and extract the most significant characteristics using an appropriate prediction model.This study focuses on extracting a subset of attributes best suited for the task and recommending a predictivemodel based on domain expert opinion.The proposed method is evaluated using Drebin and TUANDROMDdatasets containing 15,036 and 4,464 benign and malicious samples,respectively.The empirical result shows thatthe RandomForest(RF)and Support VectorMachine(SVC)classifiers achieved impressive accuracy rates of 98.9%and 98.8%,respectively,in detecting unknown Androidmalware.A sensitivity analysis experiment was also carriedout on all three ML-based classifiers based on MAE,MSE,R2,and sensitivity parameters,resulting in a flawlessperformance for both datasets.This approach has substantial potential for real-world applications and can serve asa valuable tool for preventing the spread of Androidmalware and enhancing mobile device security. 展开更多
关键词 Android malware detection machine learning SVC k-nearest neighbors(knn) RF
下载PDF
Study on Chironomid Larvae Recognition Based on DWT and Improved KNN
9
作者 赵晶莹 郭海 孙兴滨 《Agricultural Science & Technology》 CAS 2009年第4期146-149,共4页
A chironomid larvae images recognition method based on wavelet energy feature and improved KNN is developed. Wavelet decomposition and color information entropy are selected to construct vectors for KNN that is used t... A chironomid larvae images recognition method based on wavelet energy feature and improved KNN is developed. Wavelet decomposition and color information entropy are selected to construct vectors for KNN that is used to classify of the images. The distance function is modified according to the weight determined by the correlation degree between feature and class, which effectively improves classification accuracy. The result shows the mean accuracy of classification rate is up to 95.41% for freshwater plankton images, such as chironomid larvae, cyclops and harpacticoida. 展开更多
关键词 Freshwater plankton Chironomid larvae Wavelet decomposition Color features k-nearest neighbor knn
下载PDF
Detection and recognition of LPI radar signals using visibility graphs 被引量:3
10
作者 WAN Tao JIANG Kaili +2 位作者 LIAO Jingyi TANG Yanli TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1186-1192,共7页
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l... The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches. 展开更多
关键词 DETECTION RECOGNITION visibility graph(VG) support vector machine(SVM) k-nearest neighbor(knn)
下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
11
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors knn fuzzy c-means (FCM) clustering center
下载PDF
融合多重实例关系的无监督跨模态哈希检索
12
作者 李志欣 侯传文 谢秀敏 《软件学报》 EI CSCD 北大核心 2023年第11期4973-4988,共16页
大多数跨模态哈希检索方法仅使用余弦相似度进行特征匹配,计算方式过于单一,没有考虑到实例的关系对于性能的影响.为此,提出一种基于多重实例关系图推理的方法,通过构造相似度矩阵,建立全局和局部的实例关系图,充分挖掘实例之间的细粒... 大多数跨模态哈希检索方法仅使用余弦相似度进行特征匹配,计算方式过于单一,没有考虑到实例的关系对于性能的影响.为此,提出一种基于多重实例关系图推理的方法,通过构造相似度矩阵,建立全局和局部的实例关系图,充分挖掘实例之间的细粒度关系.在多重实例关系图的基础上进行相似度推理,首先分别进行图像模态和文本模态关系图内部的推理,然后将模态内的关系映射到实例图中进行推理,最后执行实例图内部的推理.此外,为了适应图像和文本两种模态的特点,使用分步训练策略训练神经网络.在MIRFlickr和NUS-WIDE数据集上实验表明,提出的方法在mAP指标上具有很明显的优势,在Top-k-Precision曲线上也获得良好的效果.这也说明所提方法对实例关系进行深入挖掘,从而显著地提升检索性能. 展开更多
关键词 关系图推理 跨模态哈希检索 相似度矩阵 K近邻 分步训练策略
下载PDF
云计算中保护数据隐私的快速多关键词语义排序搜索方案 被引量:20
13
作者 杨旸 刘佳 +1 位作者 蔡圣暐 杨书略 《计算机学报》 EI CSCD 北大核心 2018年第6期1346-1359,共14页
可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重... 可搜索加密技术主要解决在云服务器不完全可信的情况下,支持用户在密文上进行搜索.该文提出了一种快速的多关键词语义排序搜索方案.首先,该文首次将域加权评分的概念引入文档的评分当中,对标题、摘要等不同域中的关键词赋予不同的权重加以区分.其次,对检索关键词进行语义拓展,计算语义相似度,将语义相似度、域加权评分和相关度分数三者结合,构造了更加准确的文档索引.然后,针对现有的MRSE(Multi-keyword Ranked Search over Encrypted cloud data)方案效率不高的缺陷,将创建的文档向量分块,生成维数较小的标记向量.通过对文档标记向量和查询标记向量的匹配,有效地过滤了大量的无关文档,减少了计算文档相关度分数和排序的时间,提高了搜索的效率.最后,在加密文档向量时,将文档向量分段,每一段与对应维度的矩阵相乘,使得构建索引的时间减少,进一步提高了方案的效率.理论分析和实验结果表明:该方案实现了快速的多关键词语义模糊排序搜索,在保障数据隐私安全的同时,有效地提高了检索效率,减少了创建索引的时间,并返回更加满足用户需求的排序结果. 展开更多
关键词 云计算 可搜索加密 语义相似度 域加权评分 快速knn(k-nearest neighbor)算法
下载PDF
基于l^1范数和k近邻叠加图的半监督分类算法 被引量:2
14
作者 张云斌 张春梅 +1 位作者 周千琪 戴模 《模式识别与人工智能》 EI CSCD 北大核心 2016年第9期850-855,共6页
为了构造一个能够较好反映数据真实分布的图以提高分类性能,文中提出基于l1范数和k近邻叠加图的半监督分类算法.首先构造一个l1范数图,作为主图,然后构造一个k近邻图,作为辅图,最后将二者按一定比例叠加,得到l1范数和k近邻叠加(LNKNNS)... 为了构造一个能够较好反映数据真实分布的图以提高分类性能,文中提出基于l1范数和k近邻叠加图的半监督分类算法.首先构造一个l1范数图,作为主图,然后构造一个k近邻图,作为辅图,最后将二者按一定比例叠加,得到l1范数和k近邻叠加(LNKNNS)图.实验中选择标记样本比例从5%到25%,将基于LNKNNS图的半监督分类算法在USPS数据库上对比其它图(指数权重图、k近邻图、低秩表示图和l1范数图)的算法.实验表明,文中算法的分类识别率更高,更适合基于图的半监督学习. 展开更多
关键词 半监督分类 L1 范数图 k近邻图 k近邻叠加图
下载PDF
基于改进的多特征哈希的近重复视频检索 被引量:1
15
作者 罗红温 杨艳芳 +1 位作者 齐美彬 蒋建国 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期67-72,共6页
随着互联网的迅速发展,产生了大量的近重复视频。文章提出了一种改进的哈希算法提高近重复视频的检索准确性,根据语义哈希对图像检索的原理,对算法中的邻接矩阵进行改进。邻接矩阵表示KNN图中样本间的邻接关系,文中不再使用0和1两个值... 随着互联网的迅速发展,产生了大量的近重复视频。文章提出了一种改进的哈希算法提高近重复视频的检索准确性,根据语义哈希对图像检索的原理,对算法中的邻接矩阵进行改进。邻接矩阵表示KNN图中样本间的邻接关系,文中不再使用0和1两个值表示样本间的邻接关系,而是引入高斯核函数来表示,提高了模型的检索精度。实验结果表明所提出的方法具有更高的检索精度。 展开更多
关键词 近重复视频检索 哈希算法 邻接矩阵 高斯核函数 knn
下载PDF
K近邻分类指导的区域迭代图割算法研究 被引量:6
16
作者 管建 王亚娟 王立功 《计算机应用与软件》 北大核心 2018年第11期237-244,265,共9页
采用原始图割算法从复杂的背景中提取目标对象,经常需要大量用户交互信息并会产生错误的分割结果。针对此问题,提出一种K近邻分类指导的图割区域迭代分割算法。运用均值漂移算法,将原始图像预分割为多个同质区域作为超像素点。根据用户... 采用原始图割算法从复杂的背景中提取目标对象,经常需要大量用户交互信息并会产生错误的分割结果。针对此问题,提出一种K近邻分类指导的图割区域迭代分割算法。运用均值漂移算法,将原始图像预分割为多个同质区域作为超像素点。根据用户标记的种子区域构建加权子图,使用图割算法对邻近未标记区域分割标记。利用自训练的K近邻分类器对每次局部分割中新标记超像素点的分割标签进行置信度评估,选择高置信度的超像素点作为新的种子区域指导下一次局部分割。在不同实验图像的分割结果表明,该算法具有良好的准确性和鲁棒性。 展开更多
关键词 图像分割 超像素 图割 K近邻分类
下载PDF
遥感影像K-最近邻图目标分类改进算法的研究 被引量:4
17
作者 王振力 滕藤 +1 位作者 王群 黄忠演 《地理空间信息》 2021年第2期33-35,I0005,共4页
针对高分辨率遥感影像数据中典型目标的判别,提出基于K-最近邻图KNN改进算法的深度学习模型。该模型采用深度学习方法研究目标的属性,充分利用数据之间的关联,建立抗变换性的目标特征,可提高目标判别的准确度。高分辨遥感影像目标检测... 针对高分辨率遥感影像数据中典型目标的判别,提出基于K-最近邻图KNN改进算法的深度学习模型。该模型采用深度学习方法研究目标的属性,充分利用数据之间的关联,建立抗变换性的目标特征,可提高目标判别的准确度。高分辨遥感影像目标检测实验表明该方法的有效性。 展开更多
关键词 遥感影像 目标分类 knn算法 K-最近邻图 样本剪裁
下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:8
18
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(knn) local INTENSIFICATION memetic algorithm
下载PDF
Metabonomic analysis of hepatitis B virus-induced liver failure:identification of potential diagnostic biomarkers by fuzzy support vector machine 被引量:11
19
作者 Yong MAO Xin HUANG +3 位作者 Ke YU Hai-bin QU Chang-xiao LIU Yi-yu CHENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第6期474-481,共8页
Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potent... Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potential of using metabolites as biomarkers for liver failure by identifying metabolites with good discriminative performance for its phenotype. The serum samples from 24 HBV-indueed liver failure patients and 23 healthy volunteers were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) to generate metabolite profiles. The 24 patients were further grouped into two classes according to the severity of liver failure. Twenty-five eommensal peaks in all metabolite profiles were extracted, and the relative area values of these peaks were used as features for each sample. Three algorithms, F-test, k-nearest neighbor (KNN) and fuzzy support vector machine (FSVM) combined with exhaustive search (ES), were employed to identify a subset of metabolites (biomarkers) that best predict liver failure. Based on the achieved experimental dataset, 93.62% predictive accuracy by 6 features was selected with FSVM-ES and three key metabolites, glyeerie acid, cis-aeonitie acid and citric acid, are identified as potential diagnostic biomarkers. 展开更多
关键词 Metabolite profile analysis Potential diagnostic biomarker identification k-nearest neighbor knn Fuzzy supportvector machine (FSVM) Exhaustive search (ES) Gas chromatography-mass spectrometry (GC-MS) Hepatitis B virus (HBV)-induced liver failure
下载PDF
Accelerated k-nearest neighbors algorithm based on principal component analysis for text categorization 被引量:3
20
作者 Min DU Xing-shu CHEN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第6期407-416,共10页
Text categorization is a significant technique to manage the surging text data on the Internet.The k-nearest neighbors(kNN) algorithm is an effective,but not efficient,classification model for text categorization.In t... Text categorization is a significant technique to manage the surging text data on the Internet.The k-nearest neighbors(kNN) algorithm is an effective,but not efficient,classification model for text categorization.In this paper,we propose an effective strategy to accelerate the standard kNN,based on a simple principle:usually,near points in space are also near when they are projected into a direction,which means that distant points in the projection direction are also distant in the original space.Using the proposed strategy,most of the irrelevant points can be removed when searching for the k-nearest neighbors of a query point,which greatly decreases the computation cost.Experimental results show that the proposed strategy greatly improves the time performance of the standard kNN,with little degradation in accuracy.Specifically,it is superior in applications that have large and high-dimensional datasets. 展开更多
关键词 k-nearest neighbors(knn) TEXT CATEGORIZATION Accelerating strategy Principal COMPONENT analysis(PCA)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部