This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning me...This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning method uses the ability of learning representative features by means of a convolutional neural network(CNN),to determine suitable features of apples for the grading process.This information is fed into a one-to-one classifier that uses a support vector machine(SVM),instead of the softmax output layer of the CNN.In this manner,Yantai apples with similar shapes and low discrimination are graded using four different approaches.The fusion model using both CNN and SVM classifiers is much more accurate than the simple k-nearest neighbor(KNN),SVM,and CNN model when used separately for grading,and the learning ability and the generalization ability of the model is correspondingly increased by the combined method.Grading tests are carried out using the automated grading device that is developed in the present work.It is verified that the actual effect of apple grading using the combined CNN-SVM model is fast and accurate,which greatly reduces the manpower and labor costs of manual grading,and has important commercial prospects.展开更多
This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural...This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with su- pervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OVA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k- NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise.展开更多
Breast cancer is one of the common invasive cancers and stands at second position for death after lung cancer.The present research work is useful in image processing for characterizing shape and gray-scale complexity....Breast cancer is one of the common invasive cancers and stands at second position for death after lung cancer.The present research work is useful in image processing for characterizing shape and gray-scale complexity.The proposed Modified Differential Box Counting(MDBC)extract Fractal features such as Fractal Dimension(FD),Lacunarity,and Succolarity for shape characterization.In traditional DBC method,the unreasonable results obtained when FD is computed for tumour regions with the same roughness of intensity surface but different gray-levels.The problem is overcome by the proposedMDBCmethod that uses box over counting and under counting that covers the whole image with required scale.In MDBC method,the suitable box size selection and Under Counting Shifting rule computation handles over counting problem.An advantage of the model is that the proposed MDBC work with recently developed methods showed that our method outperforms automatic detection and classification.The extracted features are fed to K-Nearest Neighbour(KNN)and Support Vector Machine(SVM)categorizes the mammograms into normal,benign,and malignant.The method is tested on mini MIAS datasets yields good results with improved accuracy of 93%,whereas the existing FD,GLCM,Texture and Shape feature method has 91%accuracy.展开更多
This paper describes procedure for estimation of travel time on signalized arterial roads based on multiple data sources with application of dimensionality reduction. Travel time estimation approach incorporates forec...This paper describes procedure for estimation of travel time on signalized arterial roads based on multiple data sources with application of dimensionality reduction. Travel time estimation approach incorporates forecast of transportation nodes impendence and travel time on network links. Forecasting period is two hours and the estimation is based on historical data and real time data on traffic conditions. Travel time estimation combines multivariate regression, principal component analysis, KNN (k-nearest neighbours), cross validation and EWMA (exponentially weighted moving average) methods. When comparing estimation methodologies, relevantly better results were achieved by KNN method than with EWMA method. This is true for every time interval considered except for evening time interval when signalized arterial roads were uncongested.展开更多
In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that can...In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that cannot afford to take actions to mitigate the challenges of load shedding are severely inconvenienced as they have to reschedule their demand involuntarily.This study presents optimal strategies to guide households in determining suitable scheduling and sizing solutions for solar home systems to mitigate the inconvenience experienced by residents due to load shedding.To start with,we predict the load shedding stages that are used as input for the optimal strategies by using the K-Nearest Neighbour(KNN)algorithm.Based on an accurate forecast of the future load shedding patterns,we formulate the residents’inconvenience and the loss of power supply probability during load shedding as the objective function.When solving the multi-objective optimisation problem,four different strategies to fight against load shedding are identified,namely(1)optimal home appliance scheduling(HAS)under load shedding;(2)optimal HAS supported by solar panels;(3)optimal HAS supported by batteries,and(4)optimal HAS supported by the solar home system with both solar panels and batteries.Among these strategies,appliance scheduling with an optimally sized 9.6 kWh battery and a 2.74 kWp panel array of five 550 Wp panels,eliminates the loss of power supply probability and reduces the inconvenience by 92%when tested under the South African load shedding cases in 2023.展开更多
Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious...Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving,distributing,compressing and revealing highquality video content.In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask,which creatively combines the Deep Learning Techniques on Convolutional Neural Networks(CNN)and Generative Adversarial Networks(GAN).The video compression method involves the layers are divided into different groups for data processing,using CNN to remove the duplicate frames,repeating the single image instead of the duplicate images by recognizing and detecting minute changes using GAN and recorded with Long Short-Term Memory(LSTM).Instead of the complete image,the small changes generated using GAN are substituted,which helps with frame-level compression.Pixel wise comparison is performed using K-nearest Neighbours(KNN)over the frame,clustered with K-means and Singular Value Decomposition(SVD)is applied for every frame in the video for all three colour channels[Red,Green,Blue]to decrease the dimension of the utility matrix[R,G,B]by extracting its latent factors.Video frames are packed with parameters with the aid of a codec and converted to video format and the results are compared with the original video.Repeated experiments on several videos with different sizes,duration,Frames per second(FPS),and quality results demonstrated a significant resampling rate.On normal,the outcome delivered had around a 10%deviation in quality and over half in size when contrasted,and the original video.展开更多
MicroRNAs(miRNAs)exert an enormous influence on cell differentiation,biological development and the onset of diseases.Because predicting potential miRNA-disease associations(MDAs)by biological experiments usually requ...MicroRNAs(miRNAs)exert an enormous influence on cell differentiation,biological development and the onset of diseases.Because predicting potential miRNA-disease associations(MDAs)by biological experiments usually requires considerable time and money,a growing number of researchers are working on developing computational methods to predict MDAs.High accuracy is critical for prediction.To date,many algorithms have been proposed to infer novel MDAs.However,they may still have some drawbacks.In this paper,a logistic weighted profile-based bi-random walk method(LWBRW)is designed to infer potential MDAs based on known MDAs.In this method,three networks(i.e.,a miRNA functional similarity network,a disease semantic similarity network and a known MDA network)are constructed first.In the process of building the miRNA network and the disease network,Gaussian interaction profile(GIP)kernel is computed to increase the kernel similarities,and the logistic function is used to extract valuable information and protect known MDAs.Next,the known MDA matrix is preprocessed by the weighted K-nearest known neighbours(WKNKN)method to reduce the number of false negatives.Then,the LWBRW method is applied to infer novel MDAs by bi-randomly walking on the miRNA network and the disease network.Finally,the predictive ability of the LWBRW method is confirmed by the average AUC of 0.9393(0.0061)in 5-fold cross-validation(CV)and the AUC value of 0.9763 in leave-one-out cross-validation(LOOCV).In addition,case studies also show the outstanding ability of the LWBRW method to explore potential MDAs.展开更多
文摘This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning method uses the ability of learning representative features by means of a convolutional neural network(CNN),to determine suitable features of apples for the grading process.This information is fed into a one-to-one classifier that uses a support vector machine(SVM),instead of the softmax output layer of the CNN.In this manner,Yantai apples with similar shapes and low discrimination are graded using four different approaches.The fusion model using both CNN and SVM classifiers is much more accurate than the simple k-nearest neighbor(KNN),SVM,and CNN model when used separately for grading,and the learning ability and the generalization ability of the model is correspondingly increased by the combined method.Grading tests are carried out using the automated grading device that is developed in the present work.It is verified that the actual effect of apple grading using the combined CNN-SVM model is fast and accurate,which greatly reduces the manpower and labor costs of manual grading,and has important commercial prospects.
文摘This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with su- pervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OVA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k- NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise.
文摘Breast cancer is one of the common invasive cancers and stands at second position for death after lung cancer.The present research work is useful in image processing for characterizing shape and gray-scale complexity.The proposed Modified Differential Box Counting(MDBC)extract Fractal features such as Fractal Dimension(FD),Lacunarity,and Succolarity for shape characterization.In traditional DBC method,the unreasonable results obtained when FD is computed for tumour regions with the same roughness of intensity surface but different gray-levels.The problem is overcome by the proposedMDBCmethod that uses box over counting and under counting that covers the whole image with required scale.In MDBC method,the suitable box size selection and Under Counting Shifting rule computation handles over counting problem.An advantage of the model is that the proposed MDBC work with recently developed methods showed that our method outperforms automatic detection and classification.The extracted features are fed to K-Nearest Neighbour(KNN)and Support Vector Machine(SVM)categorizes the mammograms into normal,benign,and malignant.The method is tested on mini MIAS datasets yields good results with improved accuracy of 93%,whereas the existing FD,GLCM,Texture and Shape feature method has 91%accuracy.
文摘This paper describes procedure for estimation of travel time on signalized arterial roads based on multiple data sources with application of dimensionality reduction. Travel time estimation approach incorporates forecast of transportation nodes impendence and travel time on network links. Forecasting period is two hours and the estimation is based on historical data and real time data on traffic conditions. Travel time estimation combines multivariate regression, principal component analysis, KNN (k-nearest neighbours), cross validation and EWMA (exponentially weighted moving average) methods. When comparing estimation methodologies, relevantly better results were achieved by KNN method than with EWMA method. This is true for every time interval considered except for evening time interval when signalized arterial roads were uncongested.
基金supported by National Key R&D Program of China(Grant No.2021YFE0199000)National Natural Science Foundation of China(Grant No.62133015)+1 种基金National Research Foundation China/South Africa Research Cooperation Programme with Grant No.148762Royal Academy of Engineering Transforming Systems through Partnership grant scheme with reference No.TSP2021\100016.
文摘In developing countries like South Africa,users experienced more than 1030 hours of load shedding outages in just the first half of 2023 due to inadequate power supply from the national grid.Residential homes that cannot afford to take actions to mitigate the challenges of load shedding are severely inconvenienced as they have to reschedule their demand involuntarily.This study presents optimal strategies to guide households in determining suitable scheduling and sizing solutions for solar home systems to mitigate the inconvenience experienced by residents due to load shedding.To start with,we predict the load shedding stages that are used as input for the optimal strategies by using the K-Nearest Neighbour(KNN)algorithm.Based on an accurate forecast of the future load shedding patterns,we formulate the residents’inconvenience and the loss of power supply probability during load shedding as the objective function.When solving the multi-objective optimisation problem,four different strategies to fight against load shedding are identified,namely(1)optimal home appliance scheduling(HAS)under load shedding;(2)optimal HAS supported by solar panels;(3)optimal HAS supported by batteries,and(4)optimal HAS supported by the solar home system with both solar panels and batteries.Among these strategies,appliance scheduling with an optimally sized 9.6 kWh battery and a 2.74 kWp panel array of five 550 Wp panels,eliminates the loss of power supply probability and reduces the inconvenience by 92%when tested under the South African load shedding cases in 2023.
文摘Deep learning has reached many successes in Video Processing.Video has become a growing important part of our daily digital interactions.The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving,distributing,compressing and revealing highquality video content.In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask,which creatively combines the Deep Learning Techniques on Convolutional Neural Networks(CNN)and Generative Adversarial Networks(GAN).The video compression method involves the layers are divided into different groups for data processing,using CNN to remove the duplicate frames,repeating the single image instead of the duplicate images by recognizing and detecting minute changes using GAN and recorded with Long Short-Term Memory(LSTM).Instead of the complete image,the small changes generated using GAN are substituted,which helps with frame-level compression.Pixel wise comparison is performed using K-nearest Neighbours(KNN)over the frame,clustered with K-means and Singular Value Decomposition(SVD)is applied for every frame in the video for all three colour channels[Red,Green,Blue]to decrease the dimension of the utility matrix[R,G,B]by extracting its latent factors.Video frames are packed with parameters with the aid of a codec and converted to video format and the results are compared with the original video.Repeated experiments on several videos with different sizes,duration,Frames per second(FPS),and quality results demonstrated a significant resampling rate.On normal,the outcome delivered had around a 10%deviation in quality and over half in size when contrasted,and the original video.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.61902215,61872220 and 61701279.
文摘MicroRNAs(miRNAs)exert an enormous influence on cell differentiation,biological development and the onset of diseases.Because predicting potential miRNA-disease associations(MDAs)by biological experiments usually requires considerable time and money,a growing number of researchers are working on developing computational methods to predict MDAs.High accuracy is critical for prediction.To date,many algorithms have been proposed to infer novel MDAs.However,they may still have some drawbacks.In this paper,a logistic weighted profile-based bi-random walk method(LWBRW)is designed to infer potential MDAs based on known MDAs.In this method,three networks(i.e.,a miRNA functional similarity network,a disease semantic similarity network and a known MDA network)are constructed first.In the process of building the miRNA network and the disease network,Gaussian interaction profile(GIP)kernel is computed to increase the kernel similarities,and the logistic function is used to extract valuable information and protect known MDAs.Next,the known MDA matrix is preprocessed by the weighted K-nearest known neighbours(WKNKN)method to reduce the number of false negatives.Then,the LWBRW method is applied to infer novel MDAs by bi-randomly walking on the miRNA network and the disease network.Finally,the predictive ability of the LWBRW method is confirmed by the average AUC of 0.9393(0.0061)in 5-fold cross-validation(CV)and the AUC value of 0.9763 in leave-one-out cross-validation(LOOCV).In addition,case studies also show the outstanding ability of the LWBRW method to explore potential MDAs.