期刊文献+
共找到1,315篇文章
< 1 2 66 >
每页显示 20 50 100
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
1
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
2
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-Nearest neighbor and Mean imputation
下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
3
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness K-nearest neighbor algorithm Real-time monitor
下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:1
4
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:4
5
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification algorithms NON-PARAMETRIC K-Nearest-neighbor Neural Networks Random Forest Support Vector Machines
下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
6
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
7
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection K-nearest neighbor algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
下载PDF
融合CNN和ViT的声信号轴承故障诊断方法 被引量:5
8
作者 宁方立 王珂 郝明阳 《振动与冲击》 EI CSCD 北大核心 2024年第3期158-163,170,共7页
针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像... 针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。 展开更多
关键词 短时傅里叶变换 卷积神经网络 视觉转换器 t-分布领域嵌入算法
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
9
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
下载PDF
面向栅格地图的区域渐进均分算法
10
作者 姚寿文 郝青华 +2 位作者 许人介 王晓宇 李波 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期166-174,共9页
单架无人机续航能力限制了区域全覆盖侦察,合理的区域划分是实现多无人机协同全域侦察的关键。栅格法规划侦察区域是无人机区域侦察的常用研究方法。为了解决栅格地图等量划分的问题,提出了一种面向栅格地图的区域渐进均分算法。算法由... 单架无人机续航能力限制了区域全覆盖侦察,合理的区域划分是实现多无人机协同全域侦察的关键。栅格法规划侦察区域是无人机区域侦察的常用研究方法。为了解决栅格地图等量划分的问题,提出了一种面向栅格地图的区域渐进均分算法。算法由4个阶段构成。阶段1,建立区域边界确认的跳跃迭代法,根据栅格的特点制定判定条件,进行栅格特征标识。阶段2,提出一种双特征标识方法,对射线法进行改进,确定区域内部栅格。阶段3,模仿水波扩散,提出了一种邻边扩散法,实现区域初步的扩散分割。阶段4,设计补偿规则,通过邻边补偿算法,对各子区域栅格数进行数量补偿。实验证明,区域渐进均分算法相较于其他算法,具有较好的聚集性,连续性和均匀性,为多无人机协同全域侦察提供了理论保证。 展开更多
关键词 渐进均分算法 跳跃迭代 射线法 邻边扩散 邻边补偿
下载PDF
基于加权实例推理的缓倾斜综采工作面液压支架选型研究 被引量:2
11
作者 吴悦 张志伟 +2 位作者 桑文龙 刘佳音 何龙龙 《煤炭技术》 CAS 2024年第1期207-210,共4页
为实现地质构造简单的缓倾斜综采工作面液压支架智能化选型,提出了一种基于加权实例推理的液压支架选型方法。首先,建立了液压支架选型实例库;其次,采用粗糙集理论和序关系分析法进行权重构造;另外,将液压支架的条件属性分为3种类型计... 为实现地质构造简单的缓倾斜综采工作面液压支架智能化选型,提出了一种基于加权实例推理的液压支架选型方法。首先,建立了液压支架选型实例库;其次,采用粗糙集理论和序关系分析法进行权重构造;另外,将液压支架的条件属性分为3种类型计算相似度;最后通过匹配实例选型。以某煤矿选型方案为例,并以50组液压支架的属性数据进行验证。结果表明,该方法的准确率为88%,能够为液压支架的智能化选型提供较好的参考依据。 展开更多
关键词 液压支架 实例推理 粗糙集 序关系分析法 最邻近算法
下载PDF
求解带容量约束车辆路径问题的改进遗传算法 被引量:1
12
作者 徐伟华 邱龙龙 +1 位作者 张根瑞 魏传祥 《计算机工程与设计》 北大核心 2024年第3期785-792,共8页
为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算... 为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算子,缩小基因变异范围,使用单点局部插入算子提高算法的局部优化能力。采用精英选择和轮盘赌法结合的选择策略,保持种群多样性以加强算法的全局搜索能力。实例计算测试表明,与传统遗传算法相比,所提算法求解平均偏差降低了70.25%,求解时间减少了87.41%;与ALNS和AGGWOA算法相比,有更高的求解质量和更好的稳定性。 展开更多
关键词 遗传算法 车辆路径问题 贪婪策略 交叉算子 最近邻搜索 局部优化 精英选择
下载PDF
基于融合K-近邻算法的电压互感器在线监测方法
13
作者 李振华 崔九喜 +3 位作者 杨信强 吴海荣 杨诗豪 薛田良 《电网技术》 EI CSCD 北大核心 2024年第9期3938-3947,I0100,共11页
由于受工作时长和环境因素的影响,电容式电压互感器(capacitor voltage transformer,CVT)在运行过程中误差稳定性不高,易出现电能计量失准现象。为此,该文提出了一种基于融合K-近邻算法(fusion K-nearest neighbor algorithm,FKNN)的电... 由于受工作时长和环境因素的影响,电容式电压互感器(capacitor voltage transformer,CVT)在运行过程中误差稳定性不高,易出现电能计量失准现象。为此,该文提出了一种基于融合K-近邻算法(fusion K-nearest neighbor algorithm,FKNN)的电压互感器在线评估方法。该方法利用互感器的历史运行数据构建虚拟标准器,通过改进K-近邻算法对互感器实时状态进行监测,实现对异常情况的报警。同时,提出了一种加权移动时间窗的方法,自适应更新异常阈值,有效削弱电网不平衡波动的影响。实验结果表明,该文方法能够准确监测互感器的0.2级误差漂移。 展开更多
关键词 电压互感器 虚拟标准器 K-近邻算法 自适应更新
下载PDF
结合精英初始化和K近邻的蛇优化算法
14
作者 王丽娟 刘姝含 +1 位作者 王剑 田亚旗 《计算机应用研究》 CSCD 北大核心 2024年第9期2712-2721,共10页
蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors ... 蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors improved snake optimizer,EKISO)。首先,为了提高初始种群质量,在种群初始化阶段提出精英初始化的方法,根据种群精英个体产生优质初始种群个体;其次,通过振荡因子优化螺旋觅食策略扩大全局勘探阶段的搜索范围、提高算法的局部逃逸能力;最后,在局部开发阶段提出K近邻思想的位置更新方法,增强种群个体之间的信息交互能力,从而加快收敛速度、提高收敛精度。利用14个经典测试函数和4个CEC2017测试函数将该方法与其他7种优化算法进行对比,证明EKISO收敛速度更快、精度更高且不易陷入局部最优。为了进一步验证EKISO的实用性与可行性,将EKISO应用于压力容器设计问题中,通过实验对比分析可知,EKISO在处理实际优化问题上具有一定的优越性。 展开更多
关键词 蛇优化算法 精英初始化 K近邻 振荡因子 工程优化
下载PDF
面向多车场冷链物流配送的改进正余弦算法
15
作者 路世昌 刘丹阳 《计算机工程与应用》 CSCD 北大核心 2024年第9期326-337,共12页
以冷链物流为对象,研究了一类考虑多中心联合配送和硬时间窗约束的调度问题。基于问题描述建立了以最小化总成本为目标的数学模型。提出了改进正余弦算法(enhanced sine-cosine algorithm,ESCA)以获取当前问题的满意解。结合问题特征创... 以冷链物流为对象,研究了一类考虑多中心联合配送和硬时间窗约束的调度问题。基于问题描述建立了以最小化总成本为目标的数学模型。提出了改进正余弦算法(enhanced sine-cosine algorithm,ESCA)以获取当前问题的满意解。结合问题特征创建了融合构造式规则的编解码方法,并辅以个体评估方法实现模型与正余弦算法(sine-cosine algorithm,SCA)的适配。同时,将反向学习机制嵌入ESCA的初始化流程,旨在提升初始解的性能。在种群进化方面,构建了融合双种群机制、非线性参数调节和随机扰动的混合进化机制以平衡寻优过程的全局探索和局部挖掘行为,并通过离散邻域搜索方法避免搜索停滞。开展了案例研究和算法对比实验,结果验证了ESCA算法的良好性能。 展开更多
关键词 优化 调度 正余弦算法 混合 邻域搜索
下载PDF
ML组合的CYGNSS海面风速反演质量控制模型
16
作者 张云 赵星宇 +3 位作者 杨树瑚 孙聪 韩彦岭 尹继伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期20-29,共10页
卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出... 卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN)模型、支持向量机(SVM)算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。 展开更多
关键词 气旋全球导航卫星系统 风速反演 质量控制 机器学习组合模型 卷积神经网络 K最邻近算法
下载PDF
基于知识图谱与邻域感知注意力机制的推荐算法研究
17
作者 陈珊珊 姚苏滨 《计算机科学》 CSCD 北大核心 2024年第8期313-323,共11页
为解决传统推荐算法在面对数据稀疏的推荐任务时产生的冷启动问题,本研究将知识图谱引入推荐算法,结合一种新的邻域感知注意力机制代替传统图注意力机制来挖掘实体间的高阶连通信息,提出了基于知识图谱和邻域感知注意力机制的推荐模型KG... 为解决传统推荐算法在面对数据稀疏的推荐任务时产生的冷启动问题,本研究将知识图谱引入推荐算法,结合一种新的邻域感知注意力机制代替传统图注意力机制来挖掘实体间的高阶连通信息,提出了基于知识图谱和邻域感知注意力机制的推荐模型KGNPAN。得益于知识图谱可使推荐具有精准、多样和可解释的特点,该模型能够很好地缓解数据稀疏与冷启动问题。首先利用基于自对抗负采样的图嵌入方法RotatE对原有物品和用户表征的语义信息进行扩充,将实体和关系向量映射成低维嵌入向量;其次,根据协同邻居的不同类型分别应用邻域感知注意力机制聚合邻居节点信息,丰富目标节点语义,并以卷积形式递归挖掘高阶连通信息;最后对用户与项目向量应用内积操作计算交互概率,得到推荐结果。在Amazon-book和Last-FM两个公共基准数据集上进行实验,结果表明,在与CKE,BPRMF,RippleNet,KGAT,KGCN和CAKN 6个基准模型的对比中,KGNPAN相较于基准模型中结果最优的CAKN模型,在召回率(Recall)上分别提升了1.30%和1.37%,在归一化折损累计增益上(NDCG)分别提升了1.26%和1.14%,充分验证了其有效性和可解释性。 展开更多
关键词 推荐算法 邻域感知注意力机制 知识图谱 图神经网络 冷启动
下载PDF
基于改进粒子群算法的木材板材下料方法
18
作者 黄秀玲 陶泽 +2 位作者 尤华政 李宸 刘俊 《林业工程学报》 CSCD 北大核心 2024年第1期125-131,共7页
木材板材在家具行业应用广泛,以绿色环保、节约能源为目的的木材板材优化下料已经成为研究的热点。木材板材下料优化问题属于二维矩形下料问题,是一种具有高度计算复杂性的问题。本研究主要针对单规格木材板材进行矩形零件下料问题,在... 木材板材在家具行业应用广泛,以绿色环保、节约能源为目的的木材板材优化下料已经成为研究的热点。木材板材下料优化问题属于二维矩形下料问题,是一种具有高度计算复杂性的问题。本研究主要针对单规格木材板材进行矩形零件下料问题,在木材板材长和宽都大于零件长和宽的情况下,通过建立二维下料的数学模型,采用标准粒子群算法、变邻域搜索算法、粒子群混合变邻域搜索算法分别进行求解,并以某企业的下料实例进行分析计算。首先,利用标准粒子群算法求解单规格板材下料问题;其次,利用变邻域搜索算法求解单规格板材下料问题。在获得局部最优解的基础上改变其邻域结构再进行局部搜索,找到另一个局部最优解,如此不断迭代,直到满足算法的终止条件,获得全局最优解;最后,利用粒子群变邻域搜索混合算法求解单规格板材下料问题。针对粒子群算法局部搜索能力较差、容易过早收敛的问题和具有较好包容性的特点,将变邻域搜索的思想融入粒子群算法中,使结果更加趋向全局最优。结果表明:粒子群变邻域搜索混合算法相比粒子群算法和变邻域算法效率都有显著提升,能显著提高该木材板材的利用率,增加企业经济效益。 展开更多
关键词 木材板材 二维矩形下料问题 粒子群算法 变邻域搜索算法 粒子群混合变邻域搜索算法
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
19
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
基于IKNN和LOF的变压器回复电压数据清洗方法研究 被引量:1
20
作者 陈啸轩 邹阳 +3 位作者 翁祖辰 林锦茄 林昕亮 张云霄 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期92-100,共9页
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近... 基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值Urmax、初始斜率Sr与主时间常数tcdom作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。 展开更多
关键词 油纸绝缘 特征数据清洗 局部离群因子算法 回复电压极化谱 改进K最近邻算法
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部