In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and...During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.展开更多
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth...The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy.展开更多
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (...In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.展开更多
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris...This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.展开更多
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ...Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.展开更多
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
基金supported by the Innovative Research Groups of National Natural Science Foundation of China(No. 51621092)National Basic Research Program of China ("973" Program, No. 2013CB035904)National Natural Science Foundation of China (No. 51439005)
文摘During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.11002086)the Shanghai Leading Academic Discipline Project(Grant No.J50103)
文摘The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy.
文摘In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.
文摘This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.
基金the National Natural Science Foundation of China under projects 61772150 and 61862012the Guangxi Key R&D Program under project AB17195025+5 种基金the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054 and 2018GXNSFAA281232the National Cryptography Development Fund of China under project MMJJ20170217the Guangxi Science and Technology Base and Special Talents Program AD18281044the Innovation Project of GUET Graduate Education under project 2017YJCX46the Guangxi Young Teachers’ Basic Ability Improvement Program under Grant 2018KY0194the open program of Guangxi Key Laboratory of Cryptography and Information Security under projects GCIS201621 and GCIS201702.
文摘Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.