期刊文献+
共找到44,462篇文章
< 1 2 250 >
每页显示 20 50 100
数值型和分类型混合数据的模糊K-Prototypes聚类算法(英文) 被引量:47
1
作者 陈宁 陈安 周龙骧 《软件学报》 EI CSCD 北大核心 2001年第8期1107-1119,共13页
由于数据库经常同时包含数值型和分类型的属性 ,因此研究能够处理混合型数据的聚类算法无疑是很重要的 .讨论了混合型数据的聚类问题 ,提出了一种模糊 K- prototypes算法 .该算法融合了 K- means和 K- modes对数值型和分类型数据的处理... 由于数据库经常同时包含数值型和分类型的属性 ,因此研究能够处理混合型数据的聚类算法无疑是很重要的 .讨论了混合型数据的聚类问题 ,提出了一种模糊 K- prototypes算法 .该算法融合了 K- means和 K- modes对数值型和分类型数据的处理方法 ,能够处理混合类型的数据 .模糊技术体现聚类的边界特征 ,更适合处理含有噪声和缺失数据的数据库 .实验结果显示 。 展开更多
关键词 数据库 数值型混合数据 型混合数据 模糊k-prototypes聚类算法
下载PDF
模糊k-prototypes聚类算法的一种改进算法 被引量:11
2
作者 王宇 杨莉 《大连理工大学学报》 EI CAS CSCD 北大核心 2003年第6期849-852,共4页
模糊k-prototypes算法是当前聚类分析中最有效算法之一.简述了模糊k-prototypes算法的发展进程和主要性质;并在此基础上,指出它在处理数值型和分类型混合数据时的不足,进而提出一种改进算法;最后,将算法应用到英语借词之中,给出计算结果... 模糊k-prototypes算法是当前聚类分析中最有效算法之一.简述了模糊k-prototypes算法的发展进程和主要性质;并在此基础上,指出它在处理数值型和分类型混合数据时的不足,进而提出一种改进算法;最后,将算法应用到英语借词之中,给出计算结果.结果表明,改进算法具有较好的稳定性和较高的精确度. 展开更多
关键词 模糊k-prototypes聚类算法 数值型属性 型属性 英语借词 数据挖掘
下载PDF
基于改进式k-prototypes聚类的坏数据辨识与修正 被引量:5
3
作者 王孝慈 董树锋 +2 位作者 刘育权 王莉 李俊格 《电测与仪表》 北大核心 2022年第2期9-15,共7页
工业领域很多技术的实现都以准确的负荷数据为基础,而工厂现有的负荷数据测量体系常因为通信、存储等故障,导致负荷数据中出现大量坏数据。因此,提出基于改进式k-prototypes聚类的坏数据辨识与修正方法,通过在聚类中引入非负荷数据特征... 工业领域很多技术的实现都以准确的负荷数据为基础,而工厂现有的负荷数据测量体系常因为通信、存储等故障,导致负荷数据中出现大量坏数据。因此,提出基于改进式k-prototypes聚类的坏数据辨识与修正方法,通过在聚类中引入非负荷数据特征,削弱负荷坏数据对聚类结果的影响,使坏数据辨识和修复结果更准确。改进式k-prototypes算法通过随机初始化,并行计算择优,克服了标准k-prototypes容易随初始聚类中心陷入局部最优解的缺陷;并通过聚类数量的自适应处理,解决了主观决定聚类数量的问题。基于聚类结果,根据正态分布原则确定负荷数据可行域,识别坏数据,并利用类中心置换法进行修正。实验表明,该方法较只考虑负荷数据的模糊均值聚类法效果更好,坏数据识别的召回率与修正的准确率显著提高。 展开更多
关键词 k-prototypes聚类 混合数据集 坏数据辨识 中心置换修正法 工业负荷预处理
下载PDF
一种有效的Gk-prototypes聚类算法 被引量:1
4
作者 郭映江 徐蔚鸿 +1 位作者 陈沅涛 文泽林 《计算机工程与科学》 CSCD 北大核心 2019年第9期1693-1699,共7页
针对传统的聚类算法对初始聚类中心敏感、只能对单一属性聚类且聚类效果有时欠佳等不足,提出了一种能处理数值属性和分类属性的Gk-prototypes聚类算法。在经典的k-prototypes聚类算法的基础上,利用去模糊相似矩阵来构造粗粒子集,结合粒... 针对传统的聚类算法对初始聚类中心敏感、只能对单一属性聚类且聚类效果有时欠佳等不足,提出了一种能处理数值属性和分类属性的Gk-prototypes聚类算法。在经典的k-prototypes聚类算法的基础上,利用去模糊相似矩阵来构造粗粒子集,结合粒计算和最大最小距离法确定初始聚类中心,并改进了目标函数。实验结果和理论分析表明,Gk-prototypes聚类算法与其他基于k-prototypes的改进算法相比,聚类更准确,有效性更好,鲁棒性更强。 展开更多
关键词 k-prototypes聚类 去模糊相似矩阵 粒计算 最大最小距离法
下载PDF
改进的模糊K-Prototypes聚类算法在研究生培养质量评估中的应用 被引量:1
5
作者 乔秀峰 张德珍 +1 位作者 吴迅 张俊 《中国管理信息化》 2018年第7期185-189,共5页
研究生教育在从追求招生数量到重视培养质量的背景下,如何有效而准确地评估研究生培养质量,成为当前各高校面临的重要课题。文章提出一种改进的模糊K-Prototypes聚类算法,可准确分析研究生培养质量情况。该算法首先提取相应的研究生培... 研究生教育在从追求招生数量到重视培养质量的背景下,如何有效而准确地评估研究生培养质量,成为当前各高校面临的重要课题。文章提出一种改进的模糊K-Prototypes聚类算法,可准确分析研究生培养质量情况。该算法首先提取相应的研究生培养质量影响因素属性,构建研究生培养质量评估指标,从而形成分析数据集;其次,为了解决研究生培养数据密度不均的问题,提出改进算法;最后利用改进的聚类算法对分析数据集进行聚类分析。以一所具体高校为例,验证提出算法的有效性和改进后聚类效果,为科学有效的研究生培养质量评估提供辅助决策方法支持。 展开更多
关键词 研究生教育 培养质量评估 模糊k-prototypes聚类
下载PDF
基于信息熵的粗糙K-prototypes聚类算法 被引量:4
6
作者 欧阳浩 戴喜生 +1 位作者 王智文 王萌 《计算机工程与设计》 北大核心 2015年第5期1239-1243,共5页
针对传统K-prototypes在计算分类属性的差异度时未考虑各个分类属性对聚类结果的影响程度,且算法容易受到噪声的干扰,无法处理数据中不够精确、不完整等不确定性问题,提出基于信息熵的粗糙K-prototypes聚类算法。在计算数据样本之间分... 针对传统K-prototypes在计算分类属性的差异度时未考虑各个分类属性对聚类结果的影响程度,且算法容易受到噪声的干扰,无法处理数据中不够精确、不完整等不确定性问题,提出基于信息熵的粗糙K-prototypes聚类算法。在计算数据样本之间分类属性的差异度时,使用信息熵的理论,确定每个分类属性对于聚类分析结果的影响权重;引入粗糙理论,计算得到各样本与粗糙模之间的粗糙相异度,通过多次迭代计算,获得最终聚类结果。该算法结合信息熵和粗糙理论,可区别对待各分类属性,解决数据不精确引起的不确定性问题,4个UCI数据集上的实验分析结果验证了该算法的有效性。 展开更多
关键词 混合型数据 信息熵 粗糙集 数据挖掘
下载PDF
基于平均差异度的改进k-prototypes聚类算法 被引量:4
7
作者 石鸿雁 徐明明 《沈阳工业大学学报》 EI CAS 北大核心 2019年第5期555-559,共5页
针对k-prototypes聚类算法随机选取初始聚类中心导致聚类结果不稳定,以及现有的大多数混合属性数据聚类算法聚类质量不高等问题,提出了基于平均差异度的改进k-prototypes聚类算法.通过利用平均差异度选取初始聚类中心,避免了初始聚类中... 针对k-prototypes聚类算法随机选取初始聚类中心导致聚类结果不稳定,以及现有的大多数混合属性数据聚类算法聚类质量不高等问题,提出了基于平均差异度的改进k-prototypes聚类算法.通过利用平均差异度选取初始聚类中心,避免了初始聚类中心点选取的随机性,同时利用信息熵确定数值数据的属性权重,并对分类属性度量公式进行改进,给出了一种混合属性数据度量公式.结果表明,改进后的算法具有较高的准确率,能够有效处理混合属性数据. 展开更多
关键词 k-prototypes算法 初始中心 混合属性数据 平均差异度 信息熵 属性权重 度量公式
下载PDF
量子遗传算法的模糊K-prototypes聚类 被引量:1
8
作者 叶奇明 梁根 《计算机工程与应用》 CSCD 北大核心 2010年第1期112-115,共4页
聚类分析是数据挖掘中应用最多的一种技术,它在许多领域都有重要应用。模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于量子遗传算法和FKP算法的... 聚类分析是数据挖掘中应用最多的一种技术,它在许多领域都有重要应用。模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于量子遗传算法和FKP算法的混合聚类算法,首先利用量子遗传算法确定FKP的初始聚类中心,再将量子遗传算法聚类结果作为后续FKP算法的初始值。实验结果显示,算法具有良好的收敛性和稳定性,聚类效果优于单一使用FKP算法和相关改进的算法。 展开更多
关键词 算法 量子遗传算法 模糊k-prototypes算法 数值型属性 数据挖掘
下载PDF
结构化模糊K-prototypes聚类算法 被引量:2
9
作者 汪加才 文巨峰 +1 位作者 陈奇 俞瑞钊 《计算机科学》 CSCD 北大核心 2005年第5期155-158,共4页
尽管综合了K-means和K-modes的K-prototypes算法已能有效地处理符号数据,但用聚类中的符号模(modes)来表示聚类中的数据均值将引起大量的信息丢失。为此,本文提出了一种适合于混合类型数据的结构化模糊K-prototypes算法(SFKP),在不增加... 尽管综合了K-means和K-modes的K-prototypes算法已能有效地处理符号数据,但用聚类中的符号模(modes)来表示聚类中的数据均值将引起大量的信息丢失。为此,本文提出了一种适合于混合类型数据的结构化模糊K-prototypes算法(SFKP),在不增加时空开销的情况下提高聚类能力。实际数据集上的实验结果显示,SFKP算法能够进行更加有效的聚类。 展开更多
关键词 结构化 算法 符号数据 信息丢失 混合 数据集
下载PDF
基于PSO的模糊K-Prototypes聚类 被引量:2
10
作者 尹波 何松华 《计算机工程与设计》 CSCD 北大核心 2008年第11期2883-2885,共3页
模糊K-Prototypes(FKP)算法能够对包含数值属性和分类属性相混合的数据集进行有效聚类,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于粒子群优化(PSO)算法和FKP算法的混合聚类算法,先利用PSO算法确定... 模糊K-Prototypes(FKP)算法能够对包含数值属性和分类属性相混合的数据集进行有效聚类,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于粒子群优化(PSO)算法和FKP算法的混合聚类算法,先利用PSO算法确定FKP的初始聚类中心,再将PSO聚类结果作为后续FKP算法的初始值。实验结果表明,新算法具有良好的收敛性和稳定性,聚类效果优于单一使用FKP算法。 展开更多
关键词 分析 粒子群优化算法 模糊算法 数值型属性 型属性 中心
下载PDF
混合属性数据k-prototypes聚类算法 被引量:3
11
作者 余文利 余建军 方建文 《计算机系统应用》 2015年第6期168-172,共5页
在现实世界中经常遇到混合数值属性和分类属性的数据,k-prototypes是聚类该类型数据的主要算法之一.针对现有混合属性聚类算法的不足,提出一种基于分布式质心和新差异测度的改进的k-prototypes算法.在新算法中,首先引入分布式质心来表... 在现实世界中经常遇到混合数值属性和分类属性的数据,k-prototypes是聚类该类型数据的主要算法之一.针对现有混合属性聚类算法的不足,提出一种基于分布式质心和新差异测度的改进的k-prototypes算法.在新算法中,首先引入分布式质心来表示簇中的分类属性的簇中心,然后结合均值和分布式质心来表示混合属性的簇中心,并提出一种新的差异测度来计算数据对象与簇中心的距离,新差异测度考虑了不同属性在聚类过程中的重要性.在三个真实数据集上的仿真实验表明,与传统的聚类算法相比,本文算法的聚类精度要优于传统的聚类算法,从而验证了本文算法的有效性. 展开更多
关键词 分布式质心 混合型数据 新差异测度 属性重要性
下载PDF
一种改进的K-Prototypes聚类算法 被引量:1
12
作者 吴孟书 吴喜之 《统计与决策》 CSSCI 北大核心 2008年第5期24-26,共3页
传统的K-Prototypes聚类算法是利用划分的思想来对混合数据进行聚类,但是当混合数据的维度增大时,对象之间的差异度几乎相等,使得此算法难以进行。针对上述缺陷,文章提出一种改进的K-Prototyes聚类算法,聚类前先剔除各类中不相关的维度... 传统的K-Prototypes聚类算法是利用划分的思想来对混合数据进行聚类,但是当混合数据的维度增大时,对象之间的差异度几乎相等,使得此算法难以进行。针对上述缺陷,文章提出一种改进的K-Prototyes聚类算法,聚类前先剔除各类中不相关的维度,将高维混合数据投影降维后再进行聚类。文中给出了Heart Disease Databases的算例,验证了算法的有效性。 展开更多
关键词 高维混合数据 投影寻踪 K—Prototyes
下载PDF
基于信息增益的模糊K-prototypes聚类算法
13
作者 欧阳浩 王智文 +1 位作者 戴喜生 刘智琦 《计算机工程与科学》 CSCD 北大核心 2015年第5期1009-1014,共6页
K-prototypes聚类算法结合了K-means算法和K-modes算法,可用于分析混合属性的数据对象。传统的K-prototypes聚类算法在计算数据对象的相异度时,未考虑各个属性对于最终聚类结果的影响程度,而现实世界中,各属性的重要程度是不同的。使用... K-prototypes聚类算法结合了K-means算法和K-modes算法,可用于分析混合属性的数据对象。传统的K-prototypes聚类算法在计算数据对象的相异度时,未考虑各个属性对于最终聚类结果的影响程度,而现实世界中,各属性的重要程度是不同的。使用了信息论中信息增益的计算方法,来获得各个属性的权值。在计算各属性的差异度时,乘以这些权值,从而可以获得更为准确的聚类结果。为了增加算法处理模糊问题的能力,本算法引用了模糊理论,从而使其具有较好的抗干扰能力和处理不确定性问题的能力。通过对四个UCI数据集的聚类分析实验,表明了本算法的有效性。 展开更多
关键词 信息增益 模糊k-prototypes算法 混合型数据
下载PDF
一种改进的K-Prototypes聚类算法 被引量:4
14
作者 孙志冉 苏航 梁毅 《计算机工程与应用》 CSCD 北大核心 2020年第21期54-59,共6页
针对K-Prototypes聚类算法中人为指定初始聚类中心和聚类数目导致算法准确度和稳定性低下的问题,提出了基于密度优化的K-Prototypes聚类算法,该算法根据数据对象的密度分布,自适应地优化聚类数目和初始聚类中心的设置,并通过区分每个属... 针对K-Prototypes聚类算法中人为指定初始聚类中心和聚类数目导致算法准确度和稳定性低下的问题,提出了基于密度优化的K-Prototypes聚类算法,该算法根据数据对象的密度分布,自适应地优化聚类数目和初始聚类中心的设置,并通过区分每个属性对聚类结果的不同影响权重,改进相异度计算公式,提升聚类的准确度。在合成数据集和UCI数据集上实验结果表明,该算法与K-Prototypes算法、DPCM算法和Fuzzy K-Prototypes算法相比,平均准确率分别提高了8.52%、4.28%和8.33%,达到了相对较好的聚类结果。 展开更多
关键词 算法 初始中心点 密度 混合属性
下载PDF
基于K-Prototypes聚类算法的股票分析师行为划分
15
作者 张晓妹 胡殿凯 《计算机科学与应用》 2018年第6期894-901,共8页
股票分析师作为信息中介,通过发布研报的形式提供股票内在投资价值的信息,其行为越发受到广大投资者的关注。由于股票分析师数量众多、研报风格迥异、质量良莠不齐,投资者缺乏相关知识经验难以去选择适合自身偏好的分析师研报。本文利用... 股票分析师作为信息中介,通过发布研报的形式提供股票内在投资价值的信息,其行为越发受到广大投资者的关注。由于股票分析师数量众多、研报风格迥异、质量良莠不齐,投资者缺乏相关知识经验难以去选择适合自身偏好的分析师研报。本文利用K-prototypes聚类算法分析具有混合属性的股票分析师行为数据,解决了股票分析师群体数据量大且分散的特性。通过刻画不同股票分析师群体的特征,帮助投资者了解分析师群体获取更多有价值的数据信息,进行理性投资降低投资风险,同时其结果为后续的多元分析提供数据基础。 展开更多
关键词 k-prototypes算法 股票分析师 研究报告
下载PDF
基于大数据聚类的通信网络安全态势预测技术 被引量:4
16
作者 陈功平 王红 《淮阴师范学院学报(自然科学版)》 CAS 2024年第1期20-26,共7页
传统通信网络安全态势预测技术缺乏大数据支撑,难以对发生的攻击进行详细分类和追踪,导致在进行长时间的态势预测中收敛过慢,准确度降低.提出一种基于大数据聚类的通信网络安全态势预测技术.分析通信网络的属性以及特点,选择安全态势描... 传统通信网络安全态势预测技术缺乏大数据支撑,难以对发生的攻击进行详细分类和追踪,导致在进行长时间的态势预测中收敛过慢,准确度降低.提出一种基于大数据聚类的通信网络安全态势预测技术.分析通信网络的属性以及特点,选择安全态势描述一级指标,将数据标准化处理之后,细分出二级指标;优化大数据聚类算法,计算最优聚类数量、确定聚类中心,建立关联规则库并优化预测流程,完成基于大数据聚类的通信网络安全态势预测技术的设计.通过实验结果表明,与两种传统的安全态势预测技术相比,设计的技术收敛速度更快,全体数据点没有出现残差扩散的现象,并且数据完整度较高. 展开更多
关键词 大数据 通信网络 安全态势 描述指标 优化 收敛速度
下载PDF
基于层次分析灰色定权聚类的煤层气开发甜点预测方法——以柿庄北区块为例 被引量:2
17
作者 张亚飞 张松航 +2 位作者 邓志宇 王瑞欣 刘广景 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第5期166-175,共10页
随着煤层气产业的发展以及非常规油气勘探开发一体化的要求,当前煤层气的勘查评价工作逐渐由勘探选区向开发甜点选区推进。然而,受限于勘探开发阶段或资料占有程度,当前多数的选区评价体系对煤储层的可改性和煤层气的可采性考虑不足,在... 随着煤层气产业的发展以及非常规油气勘探开发一体化的要求,当前煤层气的勘查评价工作逐渐由勘探选区向开发甜点选区推进。然而,受限于勘探开发阶段或资料占有程度,当前多数的选区评价体系对煤储层的可改性和煤层气的可采性考虑不足,在指导开发区井位优选或加密井方面效果不佳。基于沁水盆地柿庄北区块100余口煤层气参数井和开发井资料,分析区内3号煤层煤层气开发的资源条件、储层可改造性和煤层气可采性,采用层次分析和灰色定权聚类方法构建评价模型,评价了煤层气开发甜点区,为区内新井和加密井的部署提供依据。评价模型以煤层含气量、煤厚反映煤层气资源条件;综合考虑地应力环境和岩石力学性质,构建储层综合可改造性参数,评价储层可改造性;使用原始结构煤和碎裂煤占比、临储比和储层原始渗透率反映煤层气的可采性。每个参数采用word聚类方法分级,每个点位(每口井)计算出综合优度并排序,最终划分出煤层气开发甜点区。评价结果表明,研究区中部综合优度大于65的地区为进一步开展开发工作的甜点区。 展开更多
关键词 煤层气 柿庄北区块 评价体系 层次分析法 灰色定权 开发甜点
下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
18
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 点云简化 信息熵
下载PDF
基于谱聚类的中国绿色创新效率评价及影响机理研究 被引量:1
19
作者 郝立丽 张盼 +1 位作者 李洪敏 王威 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第1期46-54,共9页
基于创新价值链视角,运用超效率SBM-Undesirable模型分别测算了中国30个省份技术研发和成果转化2个阶段的绿色创新效率;利用谱聚类算法将中国30个省份进行了绿色创新区域划分,并应用Kernel密度估计方法对各区域绿色创新效率的差异性进... 基于创新价值链视角,运用超效率SBM-Undesirable模型分别测算了中国30个省份技术研发和成果转化2个阶段的绿色创新效率;利用谱聚类算法将中国30个省份进行了绿色创新区域划分,并应用Kernel密度估计方法对各区域绿色创新效率的差异性进行了研究;构建了面板Tobit模型,探究影响因素对各区域绿色创新效率的影响机理.结果表明:从全国范围看,成果转化阶段绿色创新效率高于技术研发阶段,技术研发阶段仍然存在较大的提升空间;划分成的3个绿色创新区域绿色创新效率存在不均衡性,各区域绿色创新效率演变规律存在显著差异;不同阶段的影响因素对各区域绿色创新效率的影响程度和方向存在差异性.基于分析结论,从政府支持力度、环境规制等方面对不同区域提高绿色创新效率给出针对性建议. 展开更多
关键词 创新价值链 绿色创新效率
下载PDF
基于多帧聚类的紧凑型HFSWR虚假点迹识别方法 被引量:1
20
作者 孙伟峰 赵林林 +1 位作者 纪永刚 戴永寿 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期419-427,共9页
紧凑型高频地波雷达发射功率低,目标检测时信噪比低、虚警率高,会产生大量虚假点迹,影响后续目标跟踪性能。为了滤除虚假点迹,利用目标的运动特性,提出了一种多帧聚类与极限学习机分类两级级联的虚假点迹识别方法。首先,利用基于最优邻... 紧凑型高频地波雷达发射功率低,目标检测时信噪比低、虚警率高,会产生大量虚假点迹,影响后续目标跟踪性能。为了滤除虚假点迹,利用目标的运动特性,提出了一种多帧聚类与极限学习机分类两级级联的虚假点迹识别方法。首先,利用基于最优邻域尺寸的多帧聚类方法,将连续多帧中与待识别点迹属于同一潜在目标的点迹聚类成簇。然后,计算簇内待识别点迹与其相邻帧内点迹的距离-多普勒速度的差分值,以其为特征利用极限学习机辨识虚假点迹。实验结果表明,所提方法能够准确将属于同一目标的点迹聚类,虚假点迹识别率达到95%。 展开更多
关键词 紧凑型地波雷达 虚假点迹识别 多帧 极限学习机
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部