Daily, we experience the effects of audio noise, which contaminates the original information bearing signal with noise from its surrounding environment. This paper focuses on real-time hardware implementation of multi...Daily, we experience the effects of audio noise, which contaminates the original information bearing signal with noise from its surrounding environment. This paper focuses on real-time hardware implementation of multi-tap adaptive noise cancellation (ANC) system by using the least mean square (LMS) algorithm on TMS320C6713 to remove undesired noise from a received signal for various audio related applications. Three different experiments are carried out by considering different audio inputs to test the efficiency of the designed ANC system. The 'C' code implementation of LMS algorithm is introduced and simulated in code composer studio (CCS), then realized on the digital signal processor (DSP) C6713. The 300 Hz, 500 Hz, 800 Hz, 1 kHz and 3 kHz of tone signals and male speech signal are used as the reference inputs to trace the noise of signal until it is eliminated. The performance of ANC system is studied in terms of convergence speed, order of the filter and signal-to-noise ratio (SNR). The experimentam results demonstrate that the designed system shows a consider- able improvement in SNR.展开更多
本文提出了一种高精度的二阶无源噪声整形逐次逼近型模数转换器(NS SAR ADC)。首先,采用了一种通过动态浮动反向放大器(FIA)实现kT/C噪声消除的技术,随后结合差分结构的定制电容,实现更小的电容阵列面积的同时抑制了采样热噪声。最后,...本文提出了一种高精度的二阶无源噪声整形逐次逼近型模数转换器(NS SAR ADC)。首先,采用了一种通过动态浮动反向放大器(FIA)实现kT/C噪声消除的技术,随后结合差分结构的定制电容,实现更小的电容阵列面积的同时抑制了采样热噪声。最后,采用翻转电压跟随器(FVF)结构作为动态缓冲器提取残差电压,并通过电容堆叠的操作实现无源求和,对比较器噪声与量化噪声进行了二阶整形。该设计采用0.18μm工艺实现,仿真表明,在1.8 V电源电压、8倍过采样率和2 MS/s的采样频率下,信号噪声失真比(SNDR)为88.57 dB,无杂散动态范围(SFDR)为99.09 dB,功耗仅为302μW。展开更多
The successive approximation register(SAR)is one of the most energy-efficient analog-to-digital converter(ADC)architecture for medium-resolution applications.However,its high energy efficiency quickly diminishes when ...The successive approximation register(SAR)is one of the most energy-efficient analog-to-digital converter(ADC)architecture for medium-resolution applications.However,its high energy efficiency quickly diminishes when the target resolution increases.This is because a SAR ADC suffers from several major error source,including the sampling kT/C noise,the comparator noise,and the DAC mismatch.These errors are increasing hard to address in high-resolution SAR ADCs.This paper reviews recent advances on error suppression techniques for SAR ADCs,including the sampling kT/C noise reduction,the noise-shaping(NS)SAR,and the mismatch error shaping(MES).These techniques aim to boost the resolution of SAR ADCs while maintaining their superior energy efficiency.展开更多
文摘Daily, we experience the effects of audio noise, which contaminates the original information bearing signal with noise from its surrounding environment. This paper focuses on real-time hardware implementation of multi-tap adaptive noise cancellation (ANC) system by using the least mean square (LMS) algorithm on TMS320C6713 to remove undesired noise from a received signal for various audio related applications. Three different experiments are carried out by considering different audio inputs to test the efficiency of the designed ANC system. The 'C' code implementation of LMS algorithm is introduced and simulated in code composer studio (CCS), then realized on the digital signal processor (DSP) C6713. The 300 Hz, 500 Hz, 800 Hz, 1 kHz and 3 kHz of tone signals and male speech signal are used as the reference inputs to trace the noise of signal until it is eliminated. The performance of ANC system is studied in terms of convergence speed, order of the filter and signal-to-noise ratio (SNR). The experimentam results demonstrate that the designed system shows a consider- able improvement in SNR.
基金supported by National Natural Science Foundation of China(No.61904094,No.61934009)China Postdoctoral Science Foundation(No.2020M670329)Beijing Innovation Center for Future Chips(ICFC).
文摘The successive approximation register(SAR)is one of the most energy-efficient analog-to-digital converter(ADC)architecture for medium-resolution applications.However,its high energy efficiency quickly diminishes when the target resolution increases.This is because a SAR ADC suffers from several major error source,including the sampling kT/C noise,the comparator noise,and the DAC mismatch.These errors are increasing hard to address in high-resolution SAR ADCs.This paper reviews recent advances on error suppression techniques for SAR ADCs,including the sampling kT/C noise reduction,the noise-shaping(NS)SAR,and the mismatch error shaping(MES).These techniques aim to boost the resolution of SAR ADCs while maintaining their superior energy efficiency.