A 4.34kb EcoR I fragment of kanamycin resistance plasmid from pET - 9a was purified by a DNA purification kit. The fragment was labeled with digoxigenin-dUTP with a commercial kit. A dot-blot hybridization and a colon...A 4.34kb EcoR I fragment of kanamycin resistance plasmid from pET - 9a was purified by a DNA purification kit. The fragment was labeled with digoxigenin-dUTP with a commercial kit. A dot-blot hybridization and a colony hybridization test with the probe were successfully developed for the surveillance of Kanamycin resistance to E.coli from swine. It was shown that the methods obtained 100% concordance in a positive tate. It was indicated that the method was available for the surveillance of kanamycin resistance to ? coli from swine.展开更多
Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, signific...Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P〈0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P〈0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P〈0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Km' (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Km' bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.展开更多
文摘A 4.34kb EcoR I fragment of kanamycin resistance plasmid from pET - 9a was purified by a DNA purification kit. The fragment was labeled with digoxigenin-dUTP with a commercial kit. A dot-blot hybridization and a colony hybridization test with the probe were successfully developed for the surveillance of Kanamycin resistance to E.coli from swine. It was shown that the methods obtained 100% concordance in a positive tate. It was indicated that the method was available for the surveillance of kanamycin resistance to ? coli from swine.
文摘Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P〈0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P〈0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P〈0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Km' (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Km' bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.