Kaolinitic sandstone samples of Lower Cretaceous from Wadi Siq-Rakyia area in Wadi Araba/south of Jordan were studied and assessed as a source of Kaolin. Three channel samples and a composite bulk sample were studied ...Kaolinitic sandstone samples of Lower Cretaceous from Wadi Siq-Rakyia area in Wadi Araba/south of Jordan were studied and assessed as a source of Kaolin. Three channel samples and a composite bulk sample were studied for their mineralogical, geochemical, and grain size distribution analysis. The aim of this research work was to achieve kaolin concentration by examining the best-suited and cost-effective processing method(s) with appropriate product recovery. Following the initial sample characterisation at “bench scale”, a pilot study was performed on the bulk sandstone sample. Kaolin was accumulated in the fine size fraction (<span style="white-space:nowrap;">−</span>125 μm) after agitating and wet screening of the sample. The <span style="white-space:nowrap;">−</span>125 μm size fraction sample was used to produce kaolin concentrate. Hydrocyclone classification was applied in the pilot study for this purpose. The mass flowrate of the feeds and the products in the hydrocyclones was calculated for the bulk sample as well as the amount of water required operating the process. A kaolin-enriched product was produced following the use of hydrocyclones. A kaolin concentrate at a grade of 71% and a recovery of 78% was produced which could be used in the ceramic industry for tableware and sanitaryware.展开更多
文摘Kaolinitic sandstone samples of Lower Cretaceous from Wadi Siq-Rakyia area in Wadi Araba/south of Jordan were studied and assessed as a source of Kaolin. Three channel samples and a composite bulk sample were studied for their mineralogical, geochemical, and grain size distribution analysis. The aim of this research work was to achieve kaolin concentration by examining the best-suited and cost-effective processing method(s) with appropriate product recovery. Following the initial sample characterisation at “bench scale”, a pilot study was performed on the bulk sandstone sample. Kaolin was accumulated in the fine size fraction (<span style="white-space:nowrap;">−</span>125 μm) after agitating and wet screening of the sample. The <span style="white-space:nowrap;">−</span>125 μm size fraction sample was used to produce kaolin concentrate. Hydrocyclone classification was applied in the pilot study for this purpose. The mass flowrate of the feeds and the products in the hydrocyclones was calculated for the bulk sample as well as the amount of water required operating the process. A kaolin-enriched product was produced following the use of hydrocyclones. A kaolin concentrate at a grade of 71% and a recovery of 78% was produced which could be used in the ceramic industry for tableware and sanitaryware.