Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments.Plant morphogenic responses to light and warm temperatures,termed photomorphogenesis a...Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments.Plant morphogenic responses to light and warm temperatures,termed photomorphogenesis and thermomorphogenesis,respectively,have been extensively studied in recent decades.During photomorphogenesis,plants actively reshape their growth and developmental patterns to cope with changes in light regimes.Accordingly,photomorphogenesis is closely associated with diverse growth hormonal cues.Notably,accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals,karrikins(KARs)and strigolactones(SLs).KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps,including seed germination.Their receptors and signaling mediators have been identified,and associated working mechanisms have been explored using gene-deficient mutants in various plant species.Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses,among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment.In this review,we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness.We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.展开更多
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways.The transcriptional repressor proteins SUPPRESSOR OF MAX21(SMAX1),SMAX1-like2(SMXL2),and D53...Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways.The transcriptional repressor proteins SUPPRESSOR OF MAX21(SMAX1),SMAX1-like2(SMXL2),and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or byinhibiting the activities of transcription factors.In this study,we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis.We discovered that SMAX1 and SMXL2 with mutations in their ethylene-responsefactor-associated amphiphilic repression(EAR)motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant.SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR4(PIF4)and PIF5 to enhance their protein stability by interacting with phytochrome B(phyB)and suppressing the association of phyB with PIF4 and PIF5.The karrikin-responsive genes were then identified by treatment with GR24ent-ssa,GR24 analog showing karrikin activity.Interestingly,INDOLE-3-ACETIC ACID INDUCIBLE 29(IAA29)expression was repressed by GR24^(ent-5D)streatment in a PIF4-and PIF5-dependent and EARindependent manner,whereas KARRIKIN UPREGULATED F-BOX 1(KUF1)expression was induced in a PIF4-and PIF5-independent and EAR-dependent manner.Furthermore,the non-transcriptional regulatory activity of SMAX1,which is independent of the EAR motif,had a global effect on gene expression.Taken together,these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.展开更多
Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot a...Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the a/~ hydrolase KAI2 is necessary for responses to karrikins. Both MAX2 and KAI2 are essential for normal light-dependent seedling development. The bZIP transcription factor HY5 acts downstream of multiple photoreceptors and promotes photomorphogenesis, but its relationship with MAX2 and KAI2 in terms of seedling development and responses to karrikins and strigolactones is poorly defined. Here, we dem- onstrate that HY5 action is genetically separable from that of MAX2 and KAI2. While by5 mutants have weak hypoco- tyl elongation responses to karrikins and the artificial strigolactone GR24, they have normal transcriptional responses, suggesting that HY5 is not involved in perception or action of karrikins or strigolactones. Furthermore, we show that overexpression of KAI2 is sufficient to enhance responses to both karrikins and GR24 in wild-type seedlings, and that KAI2 overexpression partially suppresses the hy5 long hypocotyl phenotype. These results suggest that KAI2 and MAX2 define a regulatory pathway that largely operates independently of HY5 to mediate seedling responses to abiotic signals such as smoke and light.展开更多
Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the stri...Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the strigol- actone class of plant hormones, and both signal through a common F-box protein. However, karrikins and strigolactones operate through otherwise distinct signaling pathways, each distinguished by a specific a/13 hydrolase protein. Genetic analysis suggests that plants contain endogenous compounds that signal specifically through the karrikin pathway. The other active compounds discovered in smoke are cyanohydrins that release germination-stimulating cyanide upon hydrolysis. Cyanohydrins occur widely in plants and have a role in defense against other organisms, but an additional role in endogenous cyanide signaling should also now be considered.展开更多
Arabidopsis MORE AXILLARY GROWTH2 MAX2)is a key component in the strigolactone(SL)and karrikin(KAR)signaling pathways and regulates the degradation of SUPPRESSOR OF MAX21/SMAX1-like(SMAX1/SMXL)proteins,which are trans...Arabidopsis MORE AXILLARY GROWTH2 MAX2)is a key component in the strigolactone(SL)and karrikin(KAR)signaling pathways and regulates the degradation of SUPPRESSOR OF MAX21/SMAX1-like(SMAX1/SMXL)proteins,which are transcriptional co-repressors that regulate plant architecture,as well as abiotic and biotic stress responses.The max2 mutation reduces resistance against Pseudomonas syringae pv.tomato(Pst).To uncover the mechanism of MAX2-mediated resistance,we evaluated the resistance of various SL and KAR signaling pathway mutants.The resistance of SL-deficient mutants and of dwarf 14(d14)was similar to that of the wild-type,whereas the resistance of the karrikin insensitive 2(kai2)mutant was compromised,demonstrating that the KAR signaling pathway,not the SL signaling pathway,positively regulates the immune response.We measured the resistance of smaxl and smxl mutants,as well as the double,triple,and quadruple mutants with max2,which revealed that both the smax1 mutant and smx16/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance.The susceptibility of smax1D,containing a degradation-insensitive form of SMAX1,further confirmed the SMAX1 function in the resistance.The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8.Moreover,the exogenous application of KAR2 enhanced resistance against Pst,but KAR-induced resistance depended on salicylic acid(SA)signaling.Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis.Together,we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.展开更多
Strigolactones (SLs) are a class of plant hormones that control plant development in response to environmental conditions. In rice, mesocotyl elongation is regulated by SLs in the dark, while mesocotyls are longer i...Strigolactones (SLs) are a class of plant hormones that control plant development in response to environmental conditions. In rice, mesocotyl elongation is regulated by SLs in the dark, while mesocotyls are longer in SL deficient or insensitive mutants. SLs are perceived by DWARF14 (D14), which is a member of a small gene family. In this study, we examined the function of another D14 family gene in rice, D14 LIKE (D14L), focusing on mesocotyl growth. The mesocotyls of D14L RNAi lines are longer than those of WT in the dark. This phenotype is enhanced when the D14L RNAi lines are combined with the d14 mutation, suggesting that D14 and D14L work independently to inhibit mesocotyl elongation. This phenotype is alleviated by the exogenous supply of GR24, a synthetic SL, suggesting that D14L is not necessary for SL signaling. D14L mRNA is predominantly expressed in vascular bundles and crown root primordia. Our results suggest that D14L and D14 confer their effects via an SL independent pathway and an SL signaling pathway respectively.展开更多
基金supported by the Leaping Research Program(NRF-2021R1A2B5B03001476 to C.M.P.)provided by the National Research Foundation(NRF)of Koreaa grant from Kyung Hee University in 2023(KHU-20230886 to Y.J.P.).
文摘Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments.Plant morphogenic responses to light and warm temperatures,termed photomorphogenesis and thermomorphogenesis,respectively,have been extensively studied in recent decades.During photomorphogenesis,plants actively reshape their growth and developmental patterns to cope with changes in light regimes.Accordingly,photomorphogenesis is closely associated with diverse growth hormonal cues.Notably,accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals,karrikins(KARs)and strigolactones(SLs).KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps,including seed germination.Their receptors and signaling mediators have been identified,and associated working mechanisms have been explored using gene-deficient mutants in various plant species.Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses,among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment.In this review,we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness.We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
基金the National Natural Science Foundation of China(32170320,32122012,and 32270327)the Hebei Natural Science Foundation(C2022503003)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2023025).
文摘Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways.The transcriptional repressor proteins SUPPRESSOR OF MAX21(SMAX1),SMAX1-like2(SMXL2),and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or byinhibiting the activities of transcription factors.In this study,we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis.We discovered that SMAX1 and SMXL2 with mutations in their ethylene-responsefactor-associated amphiphilic repression(EAR)motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant.SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR4(PIF4)and PIF5 to enhance their protein stability by interacting with phytochrome B(phyB)and suppressing the association of phyB with PIF4 and PIF5.The karrikin-responsive genes were then identified by treatment with GR24ent-ssa,GR24 analog showing karrikin activity.Interestingly,INDOLE-3-ACETIC ACID INDUCIBLE 29(IAA29)expression was repressed by GR24^(ent-5D)streatment in a PIF4-and PIF5-dependent and EARindependent manner,whereas KARRIKIN UPREGULATED F-BOX 1(KUF1)expression was induced in a PIF4-and PIF5-independent and EAR-dependent manner.Furthermore,the non-transcriptional regulatory activity of SMAX1,which is independent of the EAR motif,had a global effect on gene expression.Taken together,these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.
文摘Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the a/~ hydrolase KAI2 is necessary for responses to karrikins. Both MAX2 and KAI2 are essential for normal light-dependent seedling development. The bZIP transcription factor HY5 acts downstream of multiple photoreceptors and promotes photomorphogenesis, but its relationship with MAX2 and KAI2 in terms of seedling development and responses to karrikins and strigolactones is poorly defined. Here, we dem- onstrate that HY5 action is genetically separable from that of MAX2 and KAI2. While by5 mutants have weak hypoco- tyl elongation responses to karrikins and the artificial strigolactone GR24, they have normal transcriptional responses, suggesting that HY5 is not involved in perception or action of karrikins or strigolactones. Furthermore, we show that overexpression of KAI2 is sufficient to enhance responses to both karrikins and GR24 in wild-type seedlings, and that KAI2 overexpression partially suppresses the hy5 long hypocotyl phenotype. These results suggest that KAI2 and MAX2 define a regulatory pathway that largely operates independently of HY5 to mediate seedling responses to abiotic signals such as smoke and light.
文摘Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the strigol- actone class of plant hormones, and both signal through a common F-box protein. However, karrikins and strigolactones operate through otherwise distinct signaling pathways, each distinguished by a specific a/13 hydrolase protein. Genetic analysis suggests that plants contain endogenous compounds that signal specifically through the karrikin pathway. The other active compounds discovered in smoke are cyanohydrins that release germination-stimulating cyanide upon hydrolysis. Cyanohydrins occur widely in plants and have a role in defense against other organisms, but an additional role in endogenous cyanide signaling should also now be considered.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(30123515110006)the National Natural Science Foundation of China(31371557 and 31571574)the China Postdoctoral Science Foundation(2014T70603 and 2013M540527)。
文摘Arabidopsis MORE AXILLARY GROWTH2 MAX2)is a key component in the strigolactone(SL)and karrikin(KAR)signaling pathways and regulates the degradation of SUPPRESSOR OF MAX21/SMAX1-like(SMAX1/SMXL)proteins,which are transcriptional co-repressors that regulate plant architecture,as well as abiotic and biotic stress responses.The max2 mutation reduces resistance against Pseudomonas syringae pv.tomato(Pst).To uncover the mechanism of MAX2-mediated resistance,we evaluated the resistance of various SL and KAR signaling pathway mutants.The resistance of SL-deficient mutants and of dwarf 14(d14)was similar to that of the wild-type,whereas the resistance of the karrikin insensitive 2(kai2)mutant was compromised,demonstrating that the KAR signaling pathway,not the SL signaling pathway,positively regulates the immune response.We measured the resistance of smaxl and smxl mutants,as well as the double,triple,and quadruple mutants with max2,which revealed that both the smax1 mutant and smx16/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance.The susceptibility of smax1D,containing a degradation-insensitive form of SMAX1,further confirmed the SMAX1 function in the resistance.The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8.Moreover,the exogenous application of KAR2 enhanced resistance against Pst,but KAR-induced resistance depended on salicylic acid(SA)signaling.Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis.Together,we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
基金supported by a grant from the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) of Japan to J.K
文摘Strigolactones (SLs) are a class of plant hormones that control plant development in response to environmental conditions. In rice, mesocotyl elongation is regulated by SLs in the dark, while mesocotyls are longer in SL deficient or insensitive mutants. SLs are perceived by DWARF14 (D14), which is a member of a small gene family. In this study, we examined the function of another D14 family gene in rice, D14 LIKE (D14L), focusing on mesocotyl growth. The mesocotyls of D14L RNAi lines are longer than those of WT in the dark. This phenotype is enhanced when the D14L RNAi lines are combined with the d14 mutation, suggesting that D14 and D14L work independently to inhibit mesocotyl elongation. This phenotype is alleviated by the exogenous supply of GR24, a synthetic SL, suggesting that D14L is not necessary for SL signaling. D14L mRNA is predominantly expressed in vascular bundles and crown root primordia. Our results suggest that D14L and D14 confer their effects via an SL independent pathway and an SL signaling pathway respectively.