By selecting a typical peak-cluster depression area of karst region in Southwest China, we evaluated the effect of land use types and topographic factors on soil nutrients. Grid and line sampling methods were used to ...By selecting a typical peak-cluster depression area of karst region in Southwest China, we evaluated the effect of land use types and topographic factors on soil nutrients. Grid and line sampling methods were used to sample soil in depression and slope lands respectively, and classical statistical tools were applied to analyze the spatial variability character of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (AK), pH, and C/N. It was found that land use type was the dominant factor that effected the spatial heterogeneity of SOC, TN, TP, TK, AN, and AP. The content of SOC, TN, and AN decreased with the increase of land use intensity. Due to high fertilizer input, TP and AP in tillage fields were higher than those in the other land use types. TK had no obvious change trend among various land use types. Topographic factors had a significant effect on SOC, TN, TP, AN, AP, AK, and pH. Habitat factor was the dominant factor that effected AK. Altitude factor was the dominant factor for pH. However, all of these factors had no significant effect on C/N. Tillage practice had important effect on soil nutrients loss and soil degradation in the fragile karst ecosystem, and the input of organic manure should be increased in this region.展开更多
Through utilizing water flow monitoring, rock scratching, soil wood piles and radionuclide ^(137)Cs tracing in the Longhe karst ecological experimental site(hereinafter referred to"Longhe site"), Pingguo Cou...Through utilizing water flow monitoring, rock scratching, soil wood piles and radionuclide ^(137)Cs tracing in the Longhe karst ecological experimental site(hereinafter referred to"Longhe site"), Pingguo County, Guangxi Province, the features and values of soil erosion and soil leakage in different geomorphologic locations and land uses in the karst peak-cluster depressions are showed clearly. There are four kinds of geomorphologic locations in the karst peak-cluster depression, namely peaks, strip, slopes and depression. The soil leakage modulus in the peaks and strips respectively occupy 92.43% and 96.24% of the total mean soil erosion modulus at experimental sites. On the slope, soil leakage accounted for about 75%. At the bottom of depression, surface water was the main factor of soil erosion, and at last most soil leaked into underground rivers from sinkholes. The total soil erosion modulus and the contribution rates of relative surface soil erosion in regard of peaks, slopes and depressions gradually increased. There are also five major types of land use in the karst peak-cluster depressions, farmland, Kudingcha tea plantations, young Lignum Sappan fields, shrub-grassland and pastures. The soil erosion modulus of slope farmland has the highest value with an increasing trend year by year. But soil erosion modulus of other four land use types decreased by year, which shows the "grain for green" will result in better soil protection. By handling with rocky desertification and ecological rehabilitation in Longhe site, the mean soil erosion modulus of the karst peak-cluster depression has decreased about 80% from 2003 to 2015.展开更多
The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate est...The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.展开更多
为探究地形因子对500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)周边植物物种多样性及空间分布的影响,该文选取FAST周边喀斯特峰丛洼地3种典型植物群落(乔木层、灌木层、藤本层)作为研究对象,...为探究地形因子对500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)周边植物物种多样性及空间分布的影响,该文选取FAST周边喀斯特峰丛洼地3种典型植物群落(乔木层、灌木层、藤本层)作为研究对象,采用方差分析及典范对应分析(CCA)研究不同地形因子(海拔、坡度、坡向、坡位)梯度下植物群落物种多样性及空间分布特征。结果表明:(1)FAST周边植物群落α多样性指数呈现灌木层>乔木层>藤本层的趋势,乔木层、藤本层植物α多样性指数随海拔升高而增加(P<0.05),地形因子对灌木层植物α多样性无显著性影响。(2)FAST周边植物群落物种的空间分布受海拔的影响最大,其次为坡度(P<0.05)。(3)FAST周边3种植物群落的Jaccard相似性指数随海拔的升高呈现增加的趋势,沿坡度的增加呈现先升高后降低的趋势。综上所述,物种对生境的选择具有差异性,海拔和坡度是影响FAST周边喀斯特峰丛洼地植物群落空间分布的关键因子。展开更多
文摘By selecting a typical peak-cluster depression area of karst region in Southwest China, we evaluated the effect of land use types and topographic factors on soil nutrients. Grid and line sampling methods were used to sample soil in depression and slope lands respectively, and classical statistical tools were applied to analyze the spatial variability character of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (AK), pH, and C/N. It was found that land use type was the dominant factor that effected the spatial heterogeneity of SOC, TN, TP, TK, AN, and AP. The content of SOC, TN, and AN decreased with the increase of land use intensity. Due to high fertilizer input, TP and AP in tillage fields were higher than those in the other land use types. TK had no obvious change trend among various land use types. Topographic factors had a significant effect on SOC, TN, TP, AN, AP, AK, and pH. Habitat factor was the dominant factor that effected AK. Altitude factor was the dominant factor for pH. However, all of these factors had no significant effect on C/N. Tillage practice had important effect on soil nutrients loss and soil degradation in the fragile karst ecosystem, and the input of organic manure should be increased in this region.
基金the financial support by IGCP 661, CAGS Research Fund (Grant No. YYWF201725)the National Natural Science Foundation of China (Grant No.41571203)+1 种基金the Ministry of Science and Technology of China (Grant No. 2016YFC0502403-2) the Bureau of Science and Technology of Guangxi (Grant No. 2014GXNS FAA118280)
文摘Through utilizing water flow monitoring, rock scratching, soil wood piles and radionuclide ^(137)Cs tracing in the Longhe karst ecological experimental site(hereinafter referred to"Longhe site"), Pingguo County, Guangxi Province, the features and values of soil erosion and soil leakage in different geomorphologic locations and land uses in the karst peak-cluster depressions are showed clearly. There are four kinds of geomorphologic locations in the karst peak-cluster depression, namely peaks, strip, slopes and depression. The soil leakage modulus in the peaks and strips respectively occupy 92.43% and 96.24% of the total mean soil erosion modulus at experimental sites. On the slope, soil leakage accounted for about 75%. At the bottom of depression, surface water was the main factor of soil erosion, and at last most soil leaked into underground rivers from sinkholes. The total soil erosion modulus and the contribution rates of relative surface soil erosion in regard of peaks, slopes and depressions gradually increased. There are also five major types of land use in the karst peak-cluster depressions, farmland, Kudingcha tea plantations, young Lignum Sappan fields, shrub-grassland and pastures. The soil erosion modulus of slope farmland has the highest value with an increasing trend year by year. But soil erosion modulus of other four land use types decreased by year, which shows the "grain for green" will result in better soil protection. By handling with rocky desertification and ecological rehabilitation in Longhe site, the mean soil erosion modulus of the karst peak-cluster depression has decreased about 80% from 2003 to 2015.
基金supported by National Science and Technology Support Project (Grant No. 2012BAD05B03–6)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05070403)National Natural Science Foundationof China (Grant No. 41171246)
文摘The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.
文摘为探究地形因子对500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,FAST)周边植物物种多样性及空间分布的影响,该文选取FAST周边喀斯特峰丛洼地3种典型植物群落(乔木层、灌木层、藤本层)作为研究对象,采用方差分析及典范对应分析(CCA)研究不同地形因子(海拔、坡度、坡向、坡位)梯度下植物群落物种多样性及空间分布特征。结果表明:(1)FAST周边植物群落α多样性指数呈现灌木层>乔木层>藤本层的趋势,乔木层、藤本层植物α多样性指数随海拔升高而增加(P<0.05),地形因子对灌木层植物α多样性无显著性影响。(2)FAST周边植物群落物种的空间分布受海拔的影响最大,其次为坡度(P<0.05)。(3)FAST周边3种植物群落的Jaccard相似性指数随海拔的升高呈现增加的趋势,沿坡度的增加呈现先升高后降低的趋势。综上所述,物种对生境的选择具有差异性,海拔和坡度是影响FAST周边喀斯特峰丛洼地植物群落空间分布的关键因子。