期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于kd_tree算法和法向量估计的点云数据精简方法
被引量:
7
1
作者
王丽
《宿州学院学报》
2019年第12期65-68,共4页
为了提高海量点云数据建模的效率,对传统的数据精简算法进行改进,提高点云数据精简精度,保留点云数据基本特征,提出基于kd_tree算法和法向量估计的点云数据精简方法。该方法利用kd_tree实现每个点K近邻数据搜素,构建点云数据树状拓扑关...
为了提高海量点云数据建模的效率,对传统的数据精简算法进行改进,提高点云数据精简精度,保留点云数据基本特征,提出基于kd_tree算法和法向量估计的点云数据精简方法。该方法利用kd_tree实现每个点K近邻数据搜素,构建点云数据树状拓扑关系,通过最小二乘拟合K近邻点平面,计算平面法向量,实现每个点云数据法向量的获取,根据点云数据法向量夹角关系,实现点云数据精简。实验证明,这种方法能够很好保留点云特征信息,实现点云数据精简。
展开更多
关键词
kd_tree
最小二乘原理
法向量
点云精简
下载PDF
职称材料
题名
基于kd_tree算法和法向量估计的点云数据精简方法
被引量:
7
1
作者
王丽
机构
宿州学院环境与测绘工程学院
出处
《宿州学院学报》
2019年第12期65-68,共4页
基金
宿州学院横向项目(2016hx007)
宿州学院重点科研项目(2016yzd01)
+1 种基金
宿州学院智慧课堂项目(szxy2017zhkt06
szxy2018zhkt05)
文摘
为了提高海量点云数据建模的效率,对传统的数据精简算法进行改进,提高点云数据精简精度,保留点云数据基本特征,提出基于kd_tree算法和法向量估计的点云数据精简方法。该方法利用kd_tree实现每个点K近邻数据搜素,构建点云数据树状拓扑关系,通过最小二乘拟合K近邻点平面,计算平面法向量,实现每个点云数据法向量的获取,根据点云数据法向量夹角关系,实现点云数据精简。实验证明,这种方法能够很好保留点云特征信息,实现点云数据精简。
关键词
kd_tree
最小二乘原理
法向量
点云精简
Keywords
kd_tree
Least squares principle
Normal vector
Point cloud data reduction
分类号
P208 [天文地球—地图制图学与地理信息工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于kd_tree算法和法向量估计的点云数据精简方法
王丽
《宿州学院学报》
2019
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部