期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Kernel Model Applied in Kernel Direct Discriminant Analysis for the Recognition of Face with Nonlinear Variations 被引量:1
1
作者 李粉兰 徐可欣 《Transactions of Tianjin University》 EI CAS 2006年第2期147-152,共6页
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it... A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models. 展开更多
关键词 face recognition kernel method: kernel direct discriminant analysis direct linear discriminant analysis
下载PDF
Linear Discriminant Analysis and Kernel Vector Quantization for Mandarin Digits Recognition
2
作者 赵军辉 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期385-388,共4页
Linear discriminant analysis and kernel vector quantization are integrated into vector quantization based speech recognition system for improving the recognition accuracy of Mandarin digits. These techniques increase ... Linear discriminant analysis and kernel vector quantization are integrated into vector quantization based speech recognition system for improving the recognition accuracy of Mandarin digits. These techniques increase the class separability and optimize the clustering procedure. Speaker-dependent (SD) and speaker-independent (SI) experiments are performed to evaluate the performance of the proposed method. The experiment results show that the proposed method is capable of reaching the word error rate of 3.76% in SD case and 6.60 % in SI case. Such a system can be suitable for being embedded in personal digital assistant(PDA), mobile phone and so on to perform voice controlling such as digit dialing, calculating, etc. 展开更多
关键词 linear discriminant analysis kernel vector quantization speech recognition
下载PDF
Face Recognition Using Kernel Discriminant Analysis 被引量:1
3
作者 张燕昆 Gu +2 位作者 Xuefeng Liu Chongqing 《High Technology Letters》 EI CAS 2002年第4期43-46,共4页
Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems,... Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems, kernel discriminant analysis for face recognition is presented. This approach adopts the kernel functions to replace the dot products of nonlinear mapping in the high dimensional feature space, and then the nonlinear problem can be solved in the input space conveniently without explicit mapping. Two face databases are given. 展开更多
关键词 face recognition linear discriminant analysis kernel discriminant analysis
下载PDF
基于LDA+kernel-KNNFLC的语音情感识别方法 被引量:8
4
作者 张昕然 查诚 +2 位作者 徐新洲 宋鹏 赵力 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期5-11,共7页
结合K近邻、核学习方法、特征线重心法和LDA算法,提出了用于情感识别的LDA+kernel-KNNFLC方法.首先针对先验样本特征造成的计算量庞大问题,采用重心准则学习样本距离,改进了核学习的K近邻方法;然后加入LDA对情感特征向量进行优化,在避... 结合K近邻、核学习方法、特征线重心法和LDA算法,提出了用于情感识别的LDA+kernel-KNNFLC方法.首先针对先验样本特征造成的计算量庞大问题,采用重心准则学习样本距离,改进了核学习的K近邻方法;然后加入LDA对情感特征向量进行优化,在避免维度冗余的情况下,更好地保证了情感信息识别的稳定性.最后,通过对特征空间再学习,结合LDA的kernel-KNNFLC方法优化了情感特征向量的类间区分度,适合于语音情感识别.对包含120维全局统计特征的语音情感数据库进行仿真实验,对降维方案、情感分类器和维度参数进行了多组对比分析.结果表明,LDA+kernel-KNNFLC方法在同等条件下性能提升效果最显著. 展开更多
关键词 语音情感识别 K近邻 核学习 特征重心线 线性判别分析
下载PDF
基于广义判别分析的光谱分类 被引量:9
5
作者 许馨 杨金福 +1 位作者 吴福朝 赵永恒 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第10期1960-1964,共5页
提出了基于广义判别分析(generalized discriminant analysis,GDA)方法对恒星(Star)、星系(Galaxy)和类星体(Quasars)的光谱进行分类。广义判别分析将核技巧与Fisher判别分析结合起来,通过非线性映射将样本集映射到高维特征空间F,在F空... 提出了基于广义判别分析(generalized discriminant analysis,GDA)方法对恒星(Star)、星系(Galaxy)和类星体(Quasars)的光谱进行分类。广义判别分析将核技巧与Fisher判别分析结合起来,通过非线性映射将样本集映射到高维特征空间F,在F空间中进行线性判别分析。实验对比了LDA,GDA,PCA,KPCA算法对于恒星、星系和类星体的光谱分类性能。结果表明基于GDA的算法对于这3种类型光谱的分类正确率最高,LDA次之;尽管KPCA也是一种基于核的方法,但是选择主成分个数较少时效果较差,甚至低于LDA;基于PCA的分类效果最差。 展开更多
关键词 光谱分类 广义判别分析 线性判别分析 核主成分分析
下载PDF
核零空间线性鉴别分析及其在人脸识别中的应用 被引量:10
6
作者 甘俊英 何国辉 何思斌 《计算机学报》 EI CSCD 北大核心 2014年第11期2374-2379,共6页
零空间线性鉴别分析NLDA充分利用样本总类内离散度矩阵的零空间信息,能有效克服线性鉴别分析LDA的小样本问题.核方法通过非线性映射,将输入空间样本映射到高维特征空间,再在高维特征空间利用线性特征提取算法.因此,核方法属于非线性特... 零空间线性鉴别分析NLDA充分利用样本总类内离散度矩阵的零空间信息,能有效克服线性鉴别分析LDA的小样本问题.核方法通过非线性映射,将输入空间样本映射到高维特征空间,再在高维特征空间利用线性特征提取算法.因此,核方法属于非线性特征提取算法.文中结合LDA、NLDA和核方法的优点,引入了核零空间线性鉴别分析KNLDA,导出了KNLDA算法.该算法通过引入核函数,得到低维矩阵,有效避免了直接计算复杂的非线性映射函数,解决了高维类内离散度矩阵的维数灾难问题.同时,将KNLDA算法应用于人脸识别.基于ORL人脸数据库以及ORL与Yale混合人脸数据库的实验结果表明了KNLDA算法的有效性. 展开更多
关键词 核零空间线性鉴别分析 零空间线性鉴别分析 核方法 人脸识别
下载PDF
基于核半监督判别分析的高光谱影像特征提取 被引量:7
7
作者 张鹏强 谭熊 +2 位作者 余旭初 魏祥坡 薛志祥 《测绘科学技术学报》 CSCD 北大核心 2016年第3期258-262,268,共6页
针对高光谱影像特征提取中地物类别训练样本获取代价较高的情况,在线性判别分析的基础上,结合核方法和半监督学习理论,提出了一种基于核半监督判别分析(KSDA)的高光谱影像特征提取方法。该方法同时利用少量已知类别和大量未知类别样本... 针对高光谱影像特征提取中地物类别训练样本获取代价较高的情况,在线性判别分析的基础上,结合核方法和半监督学习理论,提出了一种基于核半监督判别分析(KSDA)的高光谱影像特征提取方法。该方法同时利用少量已知类别和大量未知类别样本数据进行模型的学习和训练。通过OMIS高光谱影像数据实验表明:在少量已知类别训练样本的条件下,经KSDA特征提取的样本数据在特征空间中能更好地聚集成团,且类别之间的距离较大,增加了类别之间的可分性,得到了较高的分类精度;同时,提取的特征影像能够较好地区分各种地物类别。 展开更多
关键词 高光谱影像 半监督学习 核半监督判别分析 线性判别分析 特征提取
下载PDF
基于MCE准则的语音识别特征线性判别分析 被引量:4
8
作者 陈斌 张连海 +2 位作者 牛铜 屈丹 李弼程 《自动化学报》 EI CSCD 北大核心 2014年第6期1208-1215,共8页
提出了一种基于最小分类错误(Minimum classification error,MCE)准则的线性判别分析方法(Linear discriminant analysis,LDA),并将其应用到连续语音识别中的特征变换.该方法采用非参数核密度估计方法进行数据概率分布估计;根据得到的... 提出了一种基于最小分类错误(Minimum classification error,MCE)准则的线性判别分析方法(Linear discriminant analysis,LDA),并将其应用到连续语音识别中的特征变换.该方法采用非参数核密度估计方法进行数据概率分布估计;根据得到的概率分布,在最小分类错误准则下,采用基于梯度下降的线性搜索算法求解判别分析变换矩阵.利用判别分析变换矩阵对相邻帧梅尔滤波器组输出拼接的超矢量变换降维,得到时频特征.实验结果表明,与传统的MFCC特征相比,经过本文判别分析提取的时频特征其识别准确率提高了1.41%,相比于HLDA(Heteroscedastic LDA)和近似成对经验正确率准则(Approximate pairwise empirical accuracy criterion,aPEAC)判别分析方法,识别准确率分别提高了1.14%和0.83%. 展开更多
关键词 线性判别分析 语音识别 核密度估计 特征变换
下载PDF
人脸识别中基于核的子空间鉴别分析 被引量:7
9
作者 陈伏兵 韦相和 +1 位作者 陈秀宏 杨静宇 《中国图象图形学报》 CSCD 北大核心 2006年第9期1242-1248,共7页
尽管基于F isher准则的线性鉴别分析被公认为特征抽取的有效方法之一,并被成功地用于人脸识别,但是由于光照变化、人脸表情和姿势变化,实际上的人脸图像分布是十分复杂的,因此,抽取非线性鉴别特征显得十分必要。为了能利用非线性鉴别特... 尽管基于F isher准则的线性鉴别分析被公认为特征抽取的有效方法之一,并被成功地用于人脸识别,但是由于光照变化、人脸表情和姿势变化,实际上的人脸图像分布是十分复杂的,因此,抽取非线性鉴别特征显得十分必要。为了能利用非线性鉴别特征进行人脸识别,提出了一种基于核的子空间鉴别分析方法。该方法首先利用核函数技术将原始样本隐式地映射到高维(甚至无穷维)特征空间;然后在高维特征空间里,利用再生核理论来建立基于广义F isher准则的两个等价模型;最后利用正交补空间方法求得最优鉴别矢量来进行人脸识别。在ORL和NUST603两个人脸数据库上,对该方法进行了鉴别性能实验,得到了识别率分别为94%和99.58%的实验结果,这表明该方法与核组合方法的识别结果相当,且明显优于KPCA和Kernel fisherfaces方法的识别结果。 展开更多
关键词 FISHER线性鉴别分析 核函数 正交补空间 人脸识别
下载PDF
基于Gabor特征的人脸识别算法的对比研究与实现 被引量:8
10
作者 许伟 赖惠成 +1 位作者 齐立飞 吴雪锋 《激光杂志》 CAS 北大核心 2015年第2期41-44,共4页
由于Gabor变换的核函数分布与哺乳动物视觉皮层简单细胞2D感受野剖面非常类似,并具有良好的方向选择性和空间局部性,从而为图像局部区域内多个方向的空间尺度信息和局部性结构特征的获取提供了更有效的方法。为了验证Gabor特征在人脸识... 由于Gabor变换的核函数分布与哺乳动物视觉皮层简单细胞2D感受野剖面非常类似,并具有良好的方向选择性和空间局部性,从而为图像局部区域内多个方向的空间尺度信息和局部性结构特征的获取提供了更有效的方法。为了验证Gabor特征在人脸识别中的有效性和准确性,本文提出了一种采用目前四种传统特征提取的人脸识别方法与基于Gabor特征的人脸识别方法进行对比研究,同时提出利用ROC和CMC两个参量来验证基于Gabor特征人脸识别方法的有效性和准确性。在ORL人脸数据库上取得的实验结果表明,基于Gabor特征的人脸识别方法在同等条件下,得到了更高的人脸识别率,同时具有良好的鲁棒性。 展开更多
关键词 GABOR特征 主成分分析 线性判别分析 核主成分分析 核费希尔分析 人脸识别
下载PDF
基于排列组合熵和加权核Fisher的肌电跌倒检测 被引量:4
11
作者 席旭刚 武昊 +1 位作者 左静 罗志增 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第11期1685-1689,1700,共6页
为实现老年人的跌倒与日常行为动作的模式识别,提出了一种基于排列组合熵和加权核Fisher线性判别的表面肌电信号跌倒识别方法.以腓肠肌和股外侧肌2路肌电信号对应的排列组合熵为特征向量输入加权核Fisher线性分类器进行模式识别,对跌倒... 为实现老年人的跌倒与日常行为动作的模式识别,提出了一种基于排列组合熵和加权核Fisher线性判别的表面肌电信号跌倒识别方法.以腓肠肌和股外侧肌2路肌电信号对应的排列组合熵为特征向量输入加权核Fisher线性分类器进行模式识别,对跌倒与坐下、蹲下和行走进行识别.实验结果表明,该方法的跌倒识别率为93.33%,特异度100%,优于其他分类方法. 展开更多
关键词 表面肌电信号 跌到识别 排列组合熵 加权核Fisher线性判别
下载PDF
基于KPCA和LDA的信号调制识别 被引量:11
12
作者 周欣 吴瑛 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1611-1616,共6页
对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle componentanalysis,KPCA)和线性判别(linear discriminant analysis,LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征... 对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle componentanalysis,KPCA)和线性判别(linear discriminant analysis,LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征参数进行主分量组合,以消除信号特征间的相关性和压缩特征向量的维数,然后利用LDA分类器进行信号调制方式的自动识别。仿真表明,在一个较大的信噪比范围内当特征非线性可分时,KPCA在特征选择方面性能更优,且基于KPCA+LDA的识别方法精度高于主分量分析(principle componentanalysis,PCA)+模板匹配算法。通过分析还可得出,KPCA+LDA等价于基于核的Fisher判别分析(kernelFisher discriminant analysis,KFDA)方法。 展开更多
关键词 调制分类 特征选择 核主分量分析 线性判别 模板匹配
下载PDF
核方法的对比研究及在步态识别中的应用 被引量:3
13
作者 贲晛烨 王科俊 刘海洋 《智能系统学报》 2011年第1期63-67,共5页
为了提高步态识别问题的识别性能,将"核技巧"应用到步态识别上,对核二维线性判别分析提出新的解决方案,在自建的HEU(B)步态数据库上,应用核主成分分析、核线性判别分析、核二维主成分分析与核二维线性判别分析进行特征提取作... 为了提高步态识别问题的识别性能,将"核技巧"应用到步态识别上,对核二维线性判别分析提出新的解决方案,在自建的HEU(B)步态数据库上,应用核主成分分析、核线性判别分析、核二维主成分分析与核二维线性判别分析进行特征提取作对比实验研究.实验结果显示:"核技巧"用于矩阵特征比向量更有效;核二维主成分分析对于单训练样本较核主成分分析更为有效;核二维线性判别分析在测试识别时间上有优势. 展开更多
关键词 步态识别 核主成分分析 核线性判别分析 核二维主成分分析 核二维线性判别分析
下载PDF
基于核的Fisher极小鉴别分析及人脸识别 被引量:3
14
作者 王建国 郑宇杰 杨静宇 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5516-5518,5522,共4页
Fisher鉴别分析被公认为是特征抽取的有效方法之一,但由于其只能抽取线性特征,而对于实际应用中复杂的样本图像分布,抽取非线性鉴别特征显得十分必要。先前的基于核Fisher鉴别分析算法虽然解决了非线性特征抽取问题,但是其存在最终特征... Fisher鉴别分析被公认为是特征抽取的有效方法之一,但由于其只能抽取线性特征,而对于实际应用中复杂的样本图像分布,抽取非线性鉴别特征显得十分必要。先前的基于核Fisher鉴别分析算法虽然解决了非线性特征抽取问题,但是其存在最终特征维数受类别数限制的问题。为了能够进一步提高特征提取效率,提出了一种基于核的Fisher极小鉴别分析方法,该方法使得最终特征维数不受类别数限制。在Yale和NUST603人脸库上进行了鉴别性能实验,实验结果验证了该方法的有效性。 展开更多
关键词 核主成分分析 FISHER鉴别分析 特征抽取 人脸识别 非线性鉴别特征
下载PDF
一种新颖混合贝叶斯分类模型研究 被引量:5
15
作者 李旭升 郭耀煌 《计算机科学》 CSCD 北大核心 2006年第9期135-139,共5页
朴素贝叶斯分类器(Naive Bayesian classmer,NB)是一种简单而有效的分类模型,但这种分类器缺乏对训练集信息的充分利用,影响了它的分类性能。通过分析NB的分类原理,并结合线性判别分析(Linear Discriminant A- nalysis,LDA)与核判别分析... 朴素贝叶斯分类器(Naive Bayesian classmer,NB)是一种简单而有效的分类模型,但这种分类器缺乏对训练集信息的充分利用,影响了它的分类性能。通过分析NB的分类原理,并结合线性判别分析(Linear Discriminant A- nalysis,LDA)与核判别分析(Kemel Discriminant Analysis,KDA)的优点,提出了一种混合贝叶斯分类模型DANB (Discriminant Analysis Naive Bayesian classifier,DANB)。将该分类方法与NB和TAN(Tree Augmented Naive Bayesian classifier,TAN)进行实验比较,结果表明,在大多数数据集上,DANB分类器具有较高的分类正确率。 展开更多
关键词 朴素贝叶斯分类器 线性判别分析 核判别分析 TAN分类器
下载PDF
核分段逆回归集成线性判别分析用于质谱数据分类 被引量:3
16
作者 成忠 诸爱士 张立庆 《分析化学》 SCIE EI CAS CSCD 北大核心 2008年第12期1657-1661,共5页
针对高维小样本质谱数据在构造模型时易产生的过拟合现象、变量间的严重共线性、及结构与性质间的非线性关系,采用了核分段逆回归(KSIR)特征提取集成线性判别分析(LDA)新技术。首先以KSIR算法完成质谱数据的非线性特征提取,然后在由新... 针对高维小样本质谱数据在构造模型时易产生的过拟合现象、变量间的严重共线性、及结构与性质间的非线性关系,采用了核分段逆回归(KSIR)特征提取集成线性判别分析(LDA)新技术。首先以KSIR算法完成质谱数据的非线性特征提取,然后在由新特征矢量张成的低维空间构造样本类别的线性判别函数,负责各样本个体类别的判定。将KSIR-LDA方法应用于软饮料的质谱数据分类,结果表明:该方法不仅适应质谱数据与性质间的非线性关系,而且可以更少、解释能力更强的特征变量取得更高的分类精度,并能实现在低维特征空间对数据的解释及可视化。 展开更多
关键词 分段逆回归 主成分分析 核函数 线性判别分析 模式分类 质谱数据
下载PDF
基于布谷鸟优化轻量梯度提升机的泥石流预测 被引量:6
17
作者 李丽敏 张俊 +2 位作者 温宗周 张明岳 魏雄伟 《科学技术与工程》 北大核心 2021年第30期13177-13184,共8页
针对山区环境中引发泥石流的影响因素复杂多样,影响因子之间易存在相互耦合以及轻量梯度提升机(light gradient boosting machine,lightGBM)预测模型易陷入局部最优问题,提出了核线性判别分析法(kernel linear discriminant analysis,KL... 针对山区环境中引发泥石流的影响因素复杂多样,影响因子之间易存在相互耦合以及轻量梯度提升机(light gradient boosting machine,lightGBM)预测模型易陷入局部最优问题,提出了核线性判别分析法(kernel linear discriminant analysis,KLDA)与经布谷鸟算法(cuckoo search,CS)寻优后的LightGBM预测模型。首先,对传感器采集到的原始数据进行清洗,并将“清洗”后得到的规范数据通过KLDA进行降维处理,得到相关性低且贡献率高的影响因子作为预测因子。采用随机取样的方法对降维后数据进行规划,选取70%的数据用于训练模型,剩余30%用于验证模型。然后,将训练数据作为输入,基于CS-LightGBM算法训练出最优预测模型。最后,结合鹅项沟监测数据进行仿真。结果证明,此方法能够将复杂的泥石流影响因子降维成利于建模的预测因子,使预测模型具有较好的预测准确度,为泥石流灾害预测方面的研究提供了新的思路。 展开更多
关键词 泥石流 核线性判别分析(KLDA) 梯度提升决策树(LightGBM) 布谷鸟优化算法(CS)
下载PDF
半监督稀疏鉴别核局部线性嵌入的非线性过程故障检测 被引量:3
18
作者 任世锦 李新玉 +2 位作者 徐桂云 潘剑寒 杨茂云 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期49-58,共10页
复杂过程往往受到运行状态复杂、工作条件恶劣等因素影响,过程数据具有很强的非线性、随机性和流形结构.近年来,核局部线性嵌入(kernel locally linear embedding,KLLE)已经成功应用于复杂过程故障检测.然而KLLE是一种无监督流形学习算... 复杂过程往往受到运行状态复杂、工作条件恶劣等因素影响,过程数据具有很强的非线性、随机性和流形结构.近年来,核局部线性嵌入(kernel locally linear embedding,KLLE)已经成功应用于复杂过程故障检测.然而KLLE是一种无监督流形学习算法,能够保持样本的局部几何信息,忽视了总体数据样本集全局/非局部鉴别信息.针对上述问题,本文提出一种新的半监督稀疏鉴别核局部线性嵌入(semi-supervised sparse discriminantKLLE,SSDKLLE)算法并用于非线性工业过程故障检测.本文主要贡献如下:(1)把半监督学习与Fisher鉴别分析(fisher discriminant analysis,FDA)引入到KLLE,有效地利用了总体数据集几何鉴别信息,提高了算法对不同类别数据的分离性;(2)基于稀疏表示通过重构优化方法对信号自适应稀疏表达的优点,利用稀疏表示自适应选择最近邻样本以及数目,提高算法鲁棒性和局部保持性能;(3)引入局部邻域处理以及核技巧策略降低过程工况数据变化对监测算法的影响,提高非线性多工况过程监测方法的性能.基于UCI数据和TE平台的仿真实验结果验证了所提算法的有效性. 展开更多
关键词 过程故障检测 核局部线性嵌入 半监督学习 FISHER鉴别分析 稀疏表示
下载PDF
基于QR分解的辨别分析用于雷达目标一维距离像识别 被引量:5
19
作者 刘华林 杨万麟 《电子测量与仪器学报》 CSCD 2007年第5期31-34,共4页
文中提出了基于QR分解的线性辨别分析与非线性核辨别分析方法,并将其用于雷达目标一维距离像识别。与传统Fisher辨别分析方法相比,新方法运用QR分解取代奇异值分解或伪逆方式以实现样本类间与类内散度矩阵的对角化,不仅有效地降低了算... 文中提出了基于QR分解的线性辨别分析与非线性核辨别分析方法,并将其用于雷达目标一维距离像识别。与传统Fisher辨别分析方法相比,新方法运用QR分解取代奇异值分解或伪逆方式以实现样本类间与类内散度矩阵的对角化,不仅有效地降低了算法的计算时间与空间复杂度,提高了系统的实时性能,同时也保证了较高的识别率。对三类不同实测飞机数据的识别结果表明了所提方法的有效性。 展开更多
关键词 雷达目标识别 线性辨别分析 核辨别分析 QR分解
下载PDF
马氏距离多核支持向量机学习模型 被引量:6
20
作者 张凯军 梁循 《计算机工程》 CAS CSCD 2014年第6期219-224,共6页
支持向量机是统计机器学习中的一种重要方法,被广泛地应用于模式识别、回归分析等问题。但一般支持向量机未考虑样本的总体分布,降低了支持向量机的泛化能力。针对该问题,提出一种马氏距离支持向量机学习模型,考虑总体样本的分布,并将... 支持向量机是统计机器学习中的一种重要方法,被广泛地应用于模式识别、回归分析等问题。但一般支持向量机未考虑样本的总体分布,降低了支持向量机的泛化能力。针对该问题,提出一种马氏距离支持向量机学习模型,考虑总体样本的分布,并将该模型扩展到多核学习模型。通过数学方法将欧式距离核矩阵转化为马氏距离核矩阵,降低模型的实现难度。实验结果证明,该模型不仅保持了欧式距离多核学习模型的原有性质,且具有更好的分类精确度。 展开更多
关键词 马氏距离 欧氏距离 多核学习模型 支持向量机 核函数 线性判别分析
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部