针对化工过程运行状态在线评估的问题,提出多数据空间全潜结构映射(multi-space total projection to latent structures,Ms T-PLS)性能评估方法。该方法采用"离线建模,在线评估"的评估策略。首先对历史多数据输入空间进行全...针对化工过程运行状态在线评估的问题,提出多数据空间全潜结构映射(multi-space total projection to latent structures,Ms T-PLS)性能评估方法。该方法采用"离线建模,在线评估"的评估策略。首先对历史多数据输入空间进行全面分解,结合多数据空间基向量提取方法,剔除多数据输入空间中与质量变量无关信息的干扰。在与质量变量相关的多数据输入空间上,建立不同运行性能等级的离线数据网络分类模型,实现"离线建模"。"在线评估"阶段,以数据滑动时间窗为评估单元,将过程性能分为稳定和过渡性能等级,把在线数据与历史性能等级进行相似度匹配。利用过程变量相对贡献度,对性能变化起决定性影响的过程变量进行识别和贡献度分析,为系统性能劣化原因的识别提供了参考。最后,应用到乙烯裂解过程在线性能评估中,说明了本评估方法可以对系统进行准确的在线性能评估。展开更多
Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is pr...Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is proposed.Orthogonal projections to latent structures(O-PLS)is a general linear multi-variable data modeling method.It can eliminate systematic variations from descriptive variables(input)that are orthogonal to response variables(output).In the framework of O-PLS model,K-OPLS method maps descriptive variables to high-dimensional feature space by using“kernel technique”to calculate predictive components and response-orthogonal components in the model.Therefore,the K-OPLS method gives the non-linear relationship between the descriptor and the response variables,which improves the performance of the model and enhances the interpretability of the model to a certain extent.To verify the validity of K-OPLS method,it was applied to soft sensing modeling of component content of debutane tower base butane(C4),the quality index of the key product output for industrial fluidized catalytic cracking unit(FCCU)and H 2S and SO 2 concentration in sulfur recovery unit(SRU).Compared with support vector machines(SVM),least-squares support-vector machine(LS-SVM),support vector machine with principal component analysis(PCA-SVM),extreme learning machine(ELM),kernel based extreme learning machine(KELM)and kernel based extreme learning machine with principal component analysis(PCA-KELM)methods under the same conditions,the experimental results show that the K-OPLS method has superior modeling accuracy and good model generalization ability.展开更多
文摘针对化工过程运行状态在线评估的问题,提出多数据空间全潜结构映射(multi-space total projection to latent structures,Ms T-PLS)性能评估方法。该方法采用"离线建模,在线评估"的评估策略。首先对历史多数据输入空间进行全面分解,结合多数据空间基向量提取方法,剔除多数据输入空间中与质量变量无关信息的干扰。在与质量变量相关的多数据输入空间上,建立不同运行性能等级的离线数据网络分类模型,实现"离线建模"。"在线评估"阶段,以数据滑动时间窗为评估单元,将过程性能分为稳定和过渡性能等级,把在线数据与历史性能等级进行相似度匹配。利用过程变量相对贡献度,对性能变化起决定性影响的过程变量进行识别和贡献度分析,为系统性能劣化原因的识别提供了参考。最后,应用到乙烯裂解过程在线性能评估中,说明了本评估方法可以对系统进行准确的在线性能评估。
基金Supported by the National Natural Science Foundation of China(61573364,61703089)the State Key Laboratory of Synthetical Automation for Process Industries(PAL–N201504)the State Key Laboratory of Process Automation in Mining&Metallurgy and Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM–KZSKL–2018–06)
基金National Natural Science Foundation of China(No.51467008)。
文摘Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is proposed.Orthogonal projections to latent structures(O-PLS)is a general linear multi-variable data modeling method.It can eliminate systematic variations from descriptive variables(input)that are orthogonal to response variables(output).In the framework of O-PLS model,K-OPLS method maps descriptive variables to high-dimensional feature space by using“kernel technique”to calculate predictive components and response-orthogonal components in the model.Therefore,the K-OPLS method gives the non-linear relationship between the descriptor and the response variables,which improves the performance of the model and enhances the interpretability of the model to a certain extent.To verify the validity of K-OPLS method,it was applied to soft sensing modeling of component content of debutane tower base butane(C4),the quality index of the key product output for industrial fluidized catalytic cracking unit(FCCU)and H 2S and SO 2 concentration in sulfur recovery unit(SRU).Compared with support vector machines(SVM),least-squares support-vector machine(LS-SVM),support vector machine with principal component analysis(PCA-SVM),extreme learning machine(ELM),kernel based extreme learning machine(KELM)and kernel based extreme learning machine with principal component analysis(PCA-KELM)methods under the same conditions,the experimental results show that the K-OPLS method has superior modeling accuracy and good model generalization ability.