In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather t...In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather than the regular emotion classification or emotion component extraction. Since there is no open dataset for this task available, we first designed and annotated an emotion cause dataset which follows the scheme of W3 C Emotion Markup Language. We then present an emotion cause detection method by using event extraction framework,where a tree structure-based representation method is used to represent the events. Since the distribution of events is imbalanced in the training data, we propose an under-sampling-based bagging algorithm to solve this problem. Even with a limited training set, the proposed approach may still extract sufficient features for analysis by a bagging of multi-kernel based SVMs method. Evaluations show that our approach achieves an F-measure 7.04%higher than the state-of-the-art methods.展开更多
In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some u...In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some useful results on decomposition of RKHS. Based on orthogonal polynomial theory and Mercer theorem, we construct the high power Legendre polynomial kernel on the cube [-1,1]<sup>d</sup>. Following presentation of the theoretical background of SVM, we evaluate the performance of this kernel on some illustrative examples in comparison with Rbf, linear and polynomial kernels.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61370165,U1636103,and 61632011)Shenzhen Foundational Research Funding(Nos.JCYJ20150625142543470 and JCYJ20170307150024907)Guangdong Provincial Engineering Technology Research Center for Data Science(No.2016KF09)
文摘In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather than the regular emotion classification or emotion component extraction. Since there is no open dataset for this task available, we first designed and annotated an emotion cause dataset which follows the scheme of W3 C Emotion Markup Language. We then present an emotion cause detection method by using event extraction framework,where a tree structure-based representation method is used to represent the events. Since the distribution of events is imbalanced in the training data, we propose an under-sampling-based bagging algorithm to solve this problem. Even with a limited training set, the proposed approach may still extract sufficient features for analysis by a bagging of multi-kernel based SVMs method. Evaluations show that our approach achieves an F-measure 7.04%higher than the state-of-the-art methods.
文摘In machines learning problems, Support Vector Machine is a method of classification. For non-linearly separable data, kernel functions are a basic ingredient in the SVM technic. In this paper, we briefly recall some useful results on decomposition of RKHS. Based on orthogonal polynomial theory and Mercer theorem, we construct the high power Legendre polynomial kernel on the cube [-1,1]<sup>d</sup>. Following presentation of the theoretical background of SVM, we evaluate the performance of this kernel on some illustrative examples in comparison with Rbf, linear and polynomial kernels.
文摘变压器故障诊断率不足一直是制约着电网运行安全和效率低下的关键问题。为解决这一问题,提出基于改进海鸥算法优化支持向量机(improved seagull optimization algorithm support vector machine,ISOA-SVM)的变压器故障诊断方法。首先开始构建SVM的油中溶解气体分析的故障诊断模型并通过核主成分分析(kernel principal component analysis,KPCA)对油中数据处理;其次通过ISOA寻找到SVM的最优核函数参数和惩罚系数;最后将数据归一化输入ISOA-SVM模型进行诊断,判断变压器的运行状态,并将结果与其他算法优化模型进行比较,仿真结果显示,该模型故障检测方法在识别故障速度以及识别精度上明显优于其他模型,有助于保证变压器的稳定运行。