期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine 被引量:1
1
作者 Tusongjiang Kari Zhiyang He +3 位作者 Aisikaer Rouzi Ziwei Zhang Xiaojing Ma Lin Du 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期691-705,共15页
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura... Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy. 展开更多
关键词 Power transformer fault diagnosis kernel extreme learning machine aquila optimization random forest
下载PDF
Anomaly Detection of UAV State Data Based on Single-Class Triangular Global Alignment Kernel Extreme Learning Machine
2
作者 Feisha Hu Qi Wang +2 位作者 Haijian Shao Shang Gao Hualong Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2405-2424,共20页
Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly bein... Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected. 展开更多
关键词 UAV safety kernel extreme learning machine triangular global alignment kernel fast independent component analysis
下载PDF
Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine 被引量:3
3
作者 Mehdi Jamei Mahdi Hasanipanah +2 位作者 Masoud Karbasi Iman Ahmadianfar Somaye Taherifar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1438-1451,共14页
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu... Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets. 展开更多
关键词 BLASTING Flyrock distance Kernel extreme learning machine(KELM) Local weighted linear regression(LWLR) Response surface methodology(RSM)
下载PDF
Dynamic model for predicting nitrogen oxide concentration at outlet of selective catalytic reduction denitrification system based on kernel extreme learning machine 被引量:1
4
作者 Ma Ning Liu Lei +2 位作者 Yang Zhenyong Yan Laiqing Dong Ze 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期383-391,共9页
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co... To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system. 展开更多
关键词 selective catalytic reduction nitrogen oxides principal component analysis kernel extreme learning machine dynamic model
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
5
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
6
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 Short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
复合地层小直径隧道掘进机掘进速度区间预测 被引量:1
7
作者 杨耀红 韩兴忠 +2 位作者 张智晓 刘德福 孙小虎 《科学技术与工程》 北大核心 2023年第34期14638-14650,共13页
合理准确预测隧道掘进机(tunnel boring machine,TBM)的掘进速度是实现TBM智能化控制的关键问题之一,复合地层小直径TBM施工的不确定性较常规地质条件更强,而传统预测方法对施工过程的不确定性考虑不足。在此通过引入区间预测方法,提出... 合理准确预测隧道掘进机(tunnel boring machine,TBM)的掘进速度是实现TBM智能化控制的关键问题之一,复合地层小直径TBM施工的不确定性较常规地质条件更强,而传统预测方法对施工过程的不确定性考虑不足。在此通过引入区间预测方法,提出基于4种不同Bootstrap方法结合KELM-ANN模型的TBM掘进速度区间预测模型,并以南水北调安阳输水隧洞工程为例,选取142组工程实测数据验证区间预测模型的有效性。研究结果表明:基于Rademacher分布建立的模型预测结果优于其他3种方法,不仅可以得到较好的点预测结果,还可以构造出较为清晰可靠的区间将掘进速度实测值完全包络在内;随着置信水平的提高,区间可容纳的不确定性和风险也逐渐上升,通过变化区间宽度,能较好地量化和解释TBM施工过程中的不确定性因素对掘进速度的影响。研究结果可为TBM掘进性能预测和掘进参数优化提供参考。 展开更多
关键词 复合地层 小直径隧道掘进机(tunnel boring machine TBM) 掘进速度 区间预测 BOOTSTRAP方法 核极限学习机(kernel based extreme learning machine KELM) 神经网络
下载PDF
Application of SABO-VMD-KELM in Fault Diagnosis of Wind Turbines
8
作者 Yuling HE Hao CUI 《Mechanical Engineering Science》 2023年第2期23-29,共7页
In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme ... In order to improve the accuracy of wind turbine fault diagnosis,a wind turbine fault diagnosis method based on Subtraction-Average-Based Optimizer(SABO)optimized Variational Mode Decomposition(VMD)and Kernel Extreme Learning Machine(KELM)is proposed.Firstly,the SABO algorithm was used to optimize the VMD parameters and decompose the original signal to obtain the best modal components,and then the nine features were calculated to obtain the feature vectors.Secondly,the SABO algorithm was used to optimize the KELM parameters,and the training set and the test set were divided according to different proportions.The results were compared with the optimized model without SABO algorithm.The experimental results show that the fault diagnosis method of wind turbine based on SABO-VMD-KELM model can achieve fault diagnosis quickly and effectively,and has higher accuracy. 展开更多
关键词 Wind turbine generator Fault diagnosis Subtraction-Average-Based Optimizer(SABO) Variational Mode Decomposition(VMD) Kernel extreme learning machine(KELM)
下载PDF
Short-term photovoltaic power prediction using combined K-SVD-OMP and KELM method 被引量:2
9
作者 LI Jun ZHENG Danyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期320-328,共9页
For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the i... For photovoltaic power prediction,a kind of sparse representation modeling method using feature extraction techniques is proposed.Firstly,all these factors affecting the photovoltaic power output are regarded as the input data of the model.Next,the dictionary learning techniques using the K-mean singular value decomposition(K-SVD)algorithm and the orthogonal matching pursuit(OMP)algorithm are used to obtain the corresponding sparse encoding based on all the input data,i.e.the initial dictionary.Then,to build the global prediction model,the sparse coding vectors are used as the input of the model of the kernel extreme learning machine(KELM).Finally,to verify the effectiveness of the combined K-SVD-OMP and KELM method,the proposed method is applied to a instance of the photovoltaic power prediction.Compared with KELM,SVM and ELM under the same conditions,experimental results show that different combined sparse representation methods achieve better prediction results,among which the combined K-SVD-OMP and KELM method shows better prediction results and modeling accuracy. 展开更多
关键词 photovoltaic power prediction sparse representation K-mean singular value decomposition algorithm(K-SVD) kernel extreme learning machine(KELM)
下载PDF
Determination of influential parameters for prediction of total sediment loads in mountain rivers using kernel-based approaches
10
作者 Kiyoumars ROUSHANGAR Saman SHAHNAZI 《Journal of Mountain Science》 SCIE CSCD 2020年第2期480-491,共12页
It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport i... It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers. 展开更多
关键词 Total sediment loads Support vector machine Gaussian process regression Kernel extreme learning machine Mountain Rivers
下载PDF
Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis 被引量:1
11
作者 Jianfu Xia Hongliang Zhang +5 位作者 Rizeng Li Zhiyan Wang Zhennao Cai Zhiyang Gu Huiling Chen Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期240-256,共17页
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t... The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy. 展开更多
关键词 Salp swarm algorithm Bare bones Quasi-oppositional based learning Function optimizations Kernel extreme learning machine
原文传递
A KELM-Based Ensemble Learning Approach for Exchange Rate Forecasting 被引量:1
12
作者 Yunjie WEI Shaolong SUN +1 位作者 Kin Keung LAI Ghulam ABBAS 《Journal of Systems Science and Information》 CSCD 2018年第4期289-301,共13页
In this paper, a KELM-based ensemble learning approach, integrating Granger causality test, grey relational analysis and KELM(Kernel Extreme Learning Machine), is proposed for the exchange rate forecasting. The study ... In this paper, a KELM-based ensemble learning approach, integrating Granger causality test, grey relational analysis and KELM(Kernel Extreme Learning Machine), is proposed for the exchange rate forecasting. The study uses a set of sixteen macroeconomic variables including, import,export, foreign exchange reserves, etc. Furthermore, the selected variables are ranked and then three of them, which have the highest degrees of relevance with the exchange rate, are filtered out by Granger causality test and the grey relational analysis, to represent the domestic situation. Then, based on the domestic situation, KELM is utilized for medium-term RMB/USD forecasting. The empirical results show that the proposed KELM-based ensemble learning approach outperforms all other benchmark models in different forecasting horizons, which implies that the KELM-based ensemble learning approach is a powerful learning approach for exchange rates forecasting. 展开更多
关键词 exchange rate macroeconomic variables forecasting kernel extreme learning machine
原文传递
ESO-KELM-based minor sensor fault identification 被引量:1
13
作者 Zhao Kai Song Jia Wang Xinlong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第4期53-63,共11页
Aiming at the sensor faults of near-space hypersonic vehicles(NSHV), a fault identification method based on the extended state observer and kernel extreme learning machine(ESO-KELM) is proposed in this paper. The meth... Aiming at the sensor faults of near-space hypersonic vehicles(NSHV), a fault identification method based on the extended state observer and kernel extreme learning machine(ESO-KELM) is proposed in this paper. The method is generated by a combination of the model-based method and the data-driven method. As the source of the fault diagnosis, the residual signals represent the difference between the ESO output and the result measured by the sensor in particular. The energy of the residual signals is distributed in both low frequency bands and high frequency bands. However, the energy of the sensor concentrates on the low-frequency bands. Combined with more different features detected by KELM, the proposed method devotes to improving the accuracy. Meanwhile, it is competent to calculate the magnitude of minor faults based on time-frequency analysis. Finally, the simulation is performed on the longitudinal channel of the Winged-Cone model published by the national aeronautics and space administration(NASA). Results show the validity and the accuracy in calculating the magnitude of the minor faults. 展开更多
关键词 minor fault diagnosis near-space hypersonic vehicles extended state observer kernel extreme learning machine wavelet packet decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部