The ability to quantify and predict the energy absorption/transmission characteristics of multi-layered porous medium is imperative if one is involved in the automotive, launch vehicle, commercial aircraft, architectu...The ability to quantify and predict the energy absorption/transmission characteristics of multi-layered porous medium is imperative if one is involved in the automotive, launch vehicle, commercial aircraft, architectural acoustics, petroleum exploration, or even in modeling human tissue. A case in point, the first four aforementioned fields rely on effective Noise and Vibration (NV) development for their commercial success. NV development requires the setting of NV targets at different system levels. The targets are then translated to Transmission Loss (TL), Insertion Loss (IL), and absorption (Alpha) performance for the multi-layered porous materials being utilized. Thus, it behooves to have a thorough understanding of the physics behind the energy dissipating mechanism of the material that entails the effects of the fluid meandering through the pores of the material and its interaction with the structural skeleton. In this section of the project the focus is on the thermal interchange that occurs within the porous medium. Via the acoustic modeling at the micro/macro level it is shown how this thermal exchange affects the acoustic compressibility within the porous material. In order to obtain a comprehensive approach the ensuing acoustic modeling includes the effects due to relaxation process, thus bulk viscosity and instantaneous entropy functions (effects due to vibration of diatomic molecules of air) are incorporated into the equation. The instantaneous entropy functions are explained by means of the Boltzmann’s distribution, partition function, and quantum states. The concept of thermal length and its connection to thermal permeability is clarified. Lastly, the results for TL calculations employing the aforementioned thermal exchange into the Transfer Matrix Method with finite size correction, (FTMM), pertaining to a simple multi-layered material is compared with experimentally obtained data.展开更多
For two particles' relative position and total momentum we have introduced the entangled state representation |μ〉, and its conjugate state|ξ〉 In this work, for the first time; we study theln via the integration...For two particles' relative position and total momentum we have introduced the entangled state representation |μ〉, and its conjugate state|ξ〉 In this work, for the first time; we study theln via the integration over ket bra operators in -ordering or -ordering, where Q-ordering means all Qs are to the left, of all Ps and -ordering means all Ps are to the left of all Qs. In this way we newly derive -ordered (or Q-ordered) expansion formulas of the two-mode squeezing operator which can show the squeezing effect on both the two-mode coordinate and momentum eigenstates. This tells that not only the integration over ket bra operators within normally ordered, but also within - ordered (or -ordered) are feasible and useful in developing quantum mechanical representation and transtbrlnation theory.展开更多
文摘The ability to quantify and predict the energy absorption/transmission characteristics of multi-layered porous medium is imperative if one is involved in the automotive, launch vehicle, commercial aircraft, architectural acoustics, petroleum exploration, or even in modeling human tissue. A case in point, the first four aforementioned fields rely on effective Noise and Vibration (NV) development for their commercial success. NV development requires the setting of NV targets at different system levels. The targets are then translated to Transmission Loss (TL), Insertion Loss (IL), and absorption (Alpha) performance for the multi-layered porous materials being utilized. Thus, it behooves to have a thorough understanding of the physics behind the energy dissipating mechanism of the material that entails the effects of the fluid meandering through the pores of the material and its interaction with the structural skeleton. In this section of the project the focus is on the thermal interchange that occurs within the porous medium. Via the acoustic modeling at the micro/macro level it is shown how this thermal exchange affects the acoustic compressibility within the porous material. In order to obtain a comprehensive approach the ensuing acoustic modeling includes the effects due to relaxation process, thus bulk viscosity and instantaneous entropy functions (effects due to vibration of diatomic molecules of air) are incorporated into the equation. The instantaneous entropy functions are explained by means of the Boltzmann’s distribution, partition function, and quantum states. The concept of thermal length and its connection to thermal permeability is clarified. Lastly, the results for TL calculations employing the aforementioned thermal exchange into the Transfer Matrix Method with finite size correction, (FTMM), pertaining to a simple multi-layered material is compared with experimentally obtained data.
基金This work was supported by the National Natural Science Foundation of China under grant No. 11175113.
文摘For two particles' relative position and total momentum we have introduced the entangled state representation |μ〉, and its conjugate state|ξ〉 In this work, for the first time; we study theln via the integration over ket bra operators in -ordering or -ordering, where Q-ordering means all Qs are to the left, of all Ps and -ordering means all Ps are to the left of all Qs. In this way we newly derive -ordered (or Q-ordered) expansion formulas of the two-mode squeezing operator which can show the squeezing effect on both the two-mode coordinate and momentum eigenstates. This tells that not only the integration over ket bra operators within normally ordered, but also within - ordered (or -ordered) are feasible and useful in developing quantum mechanical representation and transtbrlnation theory.