期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Countermeasure against blinding attack for single-photon detectors in quantum key distribution
1
作者 Lianjun Jiang Dongdong Li +12 位作者 Yuqiang Fang Meisheng Zhao Ming Liu Zhilin Xie Yukang Zhao Yanlin Tang Wei Jiang Houlin Fang Rui Ma Lei Cheng Weifeng Yang Songtao Han Shibiao Tang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期76-81,共6页
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin... Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security. 展开更多
关键词 quantum key distribution single photon detector blinding attack pulsed blinding attack COUNTERMEASURE quan-tum communication
下载PDF
A new quantum key distribution resource allocation and routing optimization scheme
2
作者 毕琳 袁晓同 +1 位作者 吴炜杰 林升熙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期244-259,共16页
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env... Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others. 展开更多
关键词 quantum key distribution(QKD) resource allocation key storage routing algorithm
下载PDF
Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
3
作者 徐乐辰 张春辉 +1 位作者 周星宇 王琴 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期204-208,共5页
Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devi... Encoding system plays a significant role in quantum key distribution(QKD).However,the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices.To alleviate the influence of misalignments,a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD.In this work,we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources.It only requires the source states are prepared in a two-dimensional Hilbert space,and can thus reduce the complexity of practical realizations.Moreover,we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method,and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources. 展开更多
关键词 quantum key distribution heralded single-photon source decoy-state method
下载PDF
Security of the traditional quantum key distribution protocols with finite-key lengths
4
作者 冯宝 黄海东 +3 位作者 卞宇翔 贾玮 周星宇 王琴 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期120-124,共5页
Quantum key distribution(QKD)in principle can provide unconditional secure communication between distant parts.However,when finite-key length is taken into account,the security can only be ensured within certain secur... Quantum key distribution(QKD)in principle can provide unconditional secure communication between distant parts.However,when finite-key length is taken into account,the security can only be ensured within certain security level.In this paper,we adopt the Chernoff bound analysis method to deal with finite-key-size effects,carrying out corresponding investigations on the relationship between the key generation rate and security parameters for different protocols,including BB84,measurement-device-independent and twin-field QKD protocols.Simulation results show that there exists a fundamental limit between the key rate and the security parameters.Therefore,this study can provide valuable references for practical application of QKD,getting a nice balance between the key generation rate and the security level. 展开更多
关键词 quantum key distribution BB84 measurement-device-independent quantum key distribution twin-field quantum key distribution
下载PDF
Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology 被引量:1
5
作者 马海强 韩雁鑫 +1 位作者 窦天琦 李鹏云 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期103-107,共5页
Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the qua... Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing(WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques. 展开更多
关键词 quantum key distribution wavelength division multiplexing secret key rate
下载PDF
Research progress in quantum key distribution
6
作者 张春雪 吴丹 +3 位作者 崔鹏伟 马俊驰 王玥 安俊明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期129-143,共15页
Quantum key distribution(QKD)is a sophisticated method for securing information by leveraging the principles of quantum mechanics.Its objective is to establish a confidential key between authorized partners who are co... Quantum key distribution(QKD)is a sophisticated method for securing information by leveraging the principles of quantum mechanics.Its objective is to establish a confidential key between authorized partners who are connected via both a quantum channel and a classical authentication channel.This paper presents a comprehensive overview of QKD protocols,chip-based QKD systems,quantum light sources,quantum detectors,fiber-based QKD networks,space-based QKD systems,as well as the applications and prospects of QKD technology. 展开更多
关键词 quantum key distribution(QKD) SOURCES detectors CHIP
下载PDF
Phase-matching quantum key distribution with imperfect sources
7
作者 张晓旭 陆宜飞 +5 位作者 汪洋 江木生 李宏伟 周淳 周雨 鲍皖苏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期288-296,共9页
The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution.Recently,a general new framework called the reference technique has attracted wide a... The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution.Recently,a general new framework called the reference technique has attracted wide attention in defending against the imperfect sources of quantum key distribution.Here,the state preparation flaws,the side channels of mode dependencies,the Trojan horse attacks,and the pulse classical correlations are studied by using the reference technique on the phase-matching protocol.Our simulation results highlight the importance of the actual secure parameters choice for transmitters,which is necessary to achieve secure communication.Increasing the single actual secure parameter will reduce the secure key rate.However,as long as the parameters are set properly,the secure key rate is still high.Considering the influences of multiple actual secure parameters will significantly reduce the secure key rate.These actual secure parameters must be considered when scientists calibrate transmitters.This work is an important step towards the practical and secure implementation of phase-matching protocol.In the future,it is essential to study the main parameters,find out their maximum and general values,classify the multiple parameters as the same parameter,and give countermeasures. 展开更多
关键词 quantum key distribution reference technique imperfect sources PHASE-MATCHING
下载PDF
Temperature characterizations of silica asymmetric Mach–Zehnder interferometer chip for quantum key distribution
8
作者 吴丹 李骁 +9 位作者 王亮亮 张家顺 陈巍 王玥 王红杰 李建光 尹小杰 吴远大 安俊明 宋泽国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期183-189,共7页
Quantum key distribution(QKD)system based on passive silica planar lightwave circuit(PLC)asymmetric Mach–Zehnder interferometers(AMZI)is characterized with thermal stability,low loss and sufficient integration scalab... Quantum key distribution(QKD)system based on passive silica planar lightwave circuit(PLC)asymmetric Mach–Zehnder interferometers(AMZI)is characterized with thermal stability,low loss and sufficient integration scalability.However,waveguide stresses,both intrinsic and temperature-induced stresses,have significant impacts on the stable operation of the system.We have designed silica AMZI chips of 400 ps delay,with bend waveguides length equalized for both long and short arms to balance the stresses thereof.The temperature characteristics of the silica PLC AMZI chip are studied.The interference visibility at the single photon level is kept higher than 95%over a wide temperature range of 12℃.The delay time change is 0.321 ps within a temperature change of 40℃.The spectral shift is 0.0011 nm/0.1℃.Temperature-induced delay time and peak wavelength variations do not affect the interference visibility.The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations. 展开更多
关键词 quantum key distribution planar lightwave circuit temperature characterization interference visibility
下载PDF
Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
9
作者 周江平 周媛媛 +1 位作者 周学军 暴轩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期188-194,共7页
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant... Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation. 展开更多
关键词 quantum key distribution phase matching protocol statistical fluctuation analysis decoy state
下载PDF
Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
10
作者 周雨 李宏伟 +5 位作者 周淳 汪洋 陆宜飞 江木生 张晓旭 鲍皖苏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期254-260,共7页
Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections... Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation. 展开更多
关键词 weak randomness quantum key distribution distinguishable decoy state
下载PDF
An Efficient Quantum Key Distribution Protocol with Dense Coding on Single Photons
11
作者 Hao Xiao Jun Zhang +2 位作者 Wenhua Huang Mi Zhou Wencheng Hu 《Computers, Materials & Continua》 SCIE EI 2019年第8期759-775,共17页
Combined with the dense coding mechanism and the bias-BB84 protocol,an efficient quantum key distribution protocol with dense coding on single photons(QDKD-SP)is proposed.Compared with the BB84 or bias-BB84 protocols ... Combined with the dense coding mechanism and the bias-BB84 protocol,an efficient quantum key distribution protocol with dense coding on single photons(QDKD-SP)is proposed.Compared with the BB84 or bias-BB84 protocols based on single photons,our QDKD-SP protocol has a higher capacity without increasing the difficulty of its experiment implementation as each correlated photon can carry two bits of useful information.Compared with the quantum dense key distribution(QDKD)protocol based on entangled states,our protocol is more feasible as the preparation and the measurement of a single-photon quantum state is not difficult with current technology.In addition,our QDKD-SP protocol is theoretically proved to be secure against the intercept-resend attack. 展开更多
关键词 Quantum key distribution bias-BB84 dense coding mechanism quantum dense key distribution single photons
下载PDF
Impact of Fiber Dispersion on Performance of Entanglement-Based Dispersive Optics Quantum Key Distribution 被引量:2
12
作者 Jing-Yuan Liu Xu Liu +1 位作者 Wei Zhang Yi-Dong Huang 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期297-307,共11页
Dispersive optics quantum key distribution(DO-QKD)based on energy-time entangled photon pairs is an important QKD scheme.In DO-QKD,the arrival time of photons is used in key generation and security analysis,which woul... Dispersive optics quantum key distribution(DO-QKD)based on energy-time entangled photon pairs is an important QKD scheme.In DO-QKD,the arrival time of photons is used in key generation and security analysis,which would be greatly affected by fiber dispersion.In this work,we establish a theoretical model of the entanglement-based DO-QKD system,considering the protocol,physical processes(such as fiber transmission and single-photon detection),and the analysis of security tests.Based on this theoretical model,we investigate the influence of chromatic dispersion introduced by transmission fibers on the performance of DO-QKD.By analyzing the benefits and costs of dispersion compensation,the system performance under G.652 and G.655 optical fibers are shown,respectively.The results show that dispersion compensation is unnecessary for DO-QKD systems in campus networks and even metro networks.Whereas,it is still required in DO-QKD systems with longer fiber transmission distances. 展开更多
关键词 Dispersion compensation dispersive optics quantum key distribution(DO-QKD) fiber chromatic dispersion quantum networks.
下载PDF
Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel 被引量:1
13
作者 张胜利 金晨辉 +3 位作者 郭建胜 史建红 邹旭波 郭光灿 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期9-13,共5页
We investigate the decoy state quantum key distribution via the atmosphere channels.We consider the efficient decoy state method with one-signal state and two-decoy states.Our results show that the decoy state method ... We investigate the decoy state quantum key distribution via the atmosphere channels.We consider the efficient decoy state method with one-signal state and two-decoy states.Our results show that the decoy state method works even in the channels with fluctuating transmittance.Nevertheless,the key generation rate will be dramatically decreased by atmosphere turbulence,which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions. 展开更多
关键词 of on in Decoy State Quantum key distribution via Beam-Wandering Modeled Atmosphere Channel that is
下载PDF
Spherical reconciliation for a continuous-variable quantum key distribution 被引量:1
14
作者 卢钊 史建红 李风光 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期109-114,共6页
Information reconciliation is a significant step for a continuous-variable quantum key distribution(CV-QKD) system.We propose a reconciliation method that allows two authorized parties to extract a consistent and secu... Information reconciliation is a significant step for a continuous-variable quantum key distribution(CV-QKD) system.We propose a reconciliation method that allows two authorized parties to extract a consistent and secure binary key in a CV-QKD protocol,which is based on Gaussian-modulated coherent states and homodyne detection.This method named spherical reconciliation is based on spherical quantization and non-binary low-density parity-check(LDPC) codes.With the suitable signal-to-noise ratio(SNR) and code rate of non-binary LDPC codes,spherical reconciliation algorithm has a high efficiency and can extend the transmission distance of CV-QKD. 展开更多
关键词 continuous-variable quantum key distribution QUANTIZATION spherical reconciliation
下载PDF
Three-party reference frame independent quantum key distribution protocol 被引量:1
15
作者 Comfort Sekga Mhlambululi Mafu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期195-205,共11页
We present a three-party reference frame independent quantum key distribution protocol which can be implemented without any alignment of reference frames between the sender and the receiver.The protocol exploits entan... We present a three-party reference frame independent quantum key distribution protocol which can be implemented without any alignment of reference frames between the sender and the receiver.The protocol exploits entangled states to establish a secret key among three communicating parties.We derive the asymptotic key rate for the proposed protocol against collective attacks and perform a finite-size key security analysis against general attacks in the presence of statistical fluctuations.We investigate the impact of reference frame misalignment on the stability of our protocol,and we obtain a transmission distance of 180 km,200 km,and 230 km for rotation of reference framesβ=π/6,β=π/8 andβ=0,respectively.Remarkably,our results demonstrate that our proposed protocol is not heavily affected by an increase in misalignment of reference frames as the achievable transmission distances are still comparable to the case where there is no misalignment in reference frames(whenβ=0).We also simulate the performance of our protocol for a fixed number of signals.Our results demonstrate that the protocol can achieve an effective key generation rate over a transmission distance of about 120 km with realistic 107 finite data signals and approximately achieve 195 km with 109 signals.Moreover,our proposed protocol is robust against noise in the quantum channel and achieves a threshold error rate of 22.7%. 展开更多
关键词 three-party reference frame independent quantum key distribution finite-size key security
下载PDF
Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors
16
作者 唐光召 孙仕海 +2 位作者 陈欢 李春燕 梁林梅 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期5-8,共4页
Measurement-device-independent quantum key distribution(MDI-QKD) eliminates all loopholes on detection.Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of 3/4 loss in the final key for the incapa... Measurement-device-independent quantum key distribution(MDI-QKD) eliminates all loopholes on detection.Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of 3/4 loss in the final key for the incapability of identifying two successive detection events by a single photon detector.Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD.The polarization states are used to generate the time bins and the phase-encoding states.The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site.We show the feasibility of our scheme with a proof-of-principle experimental demonstration.The phase reference frame is rotated extremely slowly with only passive stabilization measures.The quantum bit error rate can reach 0.8% in the Z-basis and 26.2% in the X-basis. 展开更多
关键词 QKD MDI of Time-Bin Phase-Encoding Measurement-Device-Independent Quantum key distribution with Four Single-Photon Detectors in QBER is with
下载PDF
Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations
17
作者 刘康 李剑 +2 位作者 朱建荣 张春梅 王琴 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期109-112,共4页
Reference-frame-independent quantum key distribution(RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the performa... Reference-frame-independent quantum key distribution(RFI QKD) can generate secret keys without the alignment of reference frames, which is very robust in real-life implementations of QKD systems. However, the performance of decoystate RFI QKD with both source errors and statistical fluctuations is still missing until now. In this paper, we investigate the performance of decoy-state RFI QKD in practical scenarios with two kinds of light sources, the heralded single photon source(HSPS) and the weak coherent source(WCS), and also give clear comparison results of decoy-state RFI QKD with WCS and HSPS. Simulation results show that the secret key rates of decoy-state RFI QKD with WCS are higher than those with HSPS in short distance range, but the secret key rates of RFI QKD with HSPS outperform those with WCS in long distance range. 展开更多
关键词 quantum key distribution reference-frame-independent statistical fluctuations source errors
下载PDF
Continuous variable quantum key distribution
18
作者 李永民 王旭阳 +3 位作者 白增亮 刘文元 杨申申 彭堃墀 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期102-108,共7页
Quantum key distribution enables unconditionally secure key distribution between two legitimate users.The information-theoretic security is guaranteed by the fundamental laws of quantum physics.Initially,the quantum k... Quantum key distribution enables unconditionally secure key distribution between two legitimate users.The information-theoretic security is guaranteed by the fundamental laws of quantum physics.Initially,the quantum key distribution protocol was proposed based on the qubits.Later on,it was found that quantum continuous variables can also be exploited for this target.The continuous variable quantum key distribution can build upon standard telecommunication technology and exhibits a higher secret key rate per pulse at a relatively short distance due to the possibility of encoding more than 1 bit per pulse.In this article,we review the current status of the continuous variable quantum key distribution research,including its basic principle,experimental implementations,security and future directions;the experimental progress in this field made by our group is also presented. 展开更多
关键词 quantum key distribution continuous variable quantum optics quantum communication
下载PDF
Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
19
作者 孔令志 刘维琪 +3 位作者 荆凡 张哲坤 齐锦 贺晨 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期202-207,共6页
We propose a new scheme to enhance the performance of the Gussian-modulated coherent-state continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)system via quantum scissors(QS)operatio... We propose a new scheme to enhance the performance of the Gussian-modulated coherent-state continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)system via quantum scissors(QS)operation at Bob's side.As an non-deterministic amplifying setup,we firstly introduce the QS-enhanced CV-MDI-QKD protocol and then investigate the success probability of the QS operation in accordance with the equivalent one-way scheme.Afterwards,we investigate the effect of the QS operation on the proposed scheme and analyze the performance of the QS-enhanced CV-MDI-QKD system under the extreme asymmetric circumstance.Simulation results show that the QS operation can indeed improve the performance of the CV-MDI-QKD system considerably.QS-enhanced CV-MDI-QKD protocol outperforms the original CV-MDI-QKD protocol in both the maximum transmission distance and the secret key rate.Moreover,the better the performance of QS operation,the more significant the improvement of performance of the system. 展开更多
关键词 measurement-device-independent quantum key distribution quantum scissors performance
下载PDF
Practical decoy-state BB84 quantum key distribution with quantum memory
20
作者 李咸柯 宋小谦 +2 位作者 郭其伟 周星宇 王琴 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期133-136,共4页
We generalize BB84 quantum key distribution(QKD) to the scenario where the receiver adopts a heralded quantum memory(QM). With the heralded QM, the valid dark count rate of the receiver's single photon detectors c... We generalize BB84 quantum key distribution(QKD) to the scenario where the receiver adopts a heralded quantum memory(QM). With the heralded QM, the valid dark count rate of the receiver's single photon detectors can be mitigated obviously, which will lower the quantum bit error rate, and thus improve the performance of decoy-state BB84 QKD systems in long distance range. Simulation results show that, with practical experimental system parameters, decoy-state BB84 QKD with QM can exhibit performance comparable to that of without QM in short distance range, and exhibit performance better than that without QM in long distance range. 展开更多
关键词 quantum key distribution quantum communication quantum memory decoy state
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部