The Sixth-Generation(6G)enhances the Industrial Internet of Things(IIoT)communication efficiency and further raises security requirements.It is crucial to construct a post-quantum security communication channel betwee...The Sixth-Generation(6G)enhances the Industrial Internet of Things(IIoT)communication efficiency and further raises security requirements.It is crucial to construct a post-quantum security communication channel between any pair of industrial equipment.Recent work shows that two legitimate devices can directly extract symmetrical secret keys in information-theoretic secure by measuring their common wireless channels.However,existing schemes may cause a high bit mismatch rate in IIoT with high noise.In addition,the physical layer key extraction scheme widely uses passive attack assumptions,which also contradicts the high-security requirements of IIoT.By analyzing and modeling IIoT systems and channels,we propose an Adaptive and Robust Secret Key Extraction scheme(ARSKE)from high noise wireless channels in 6G-enabled IIoT.To eliminate the non-reciprocity of the wireless channel,we design a smoothing method as the preprocessing module.Then,we propose a Robust Secure Reconciliation technique that can effectively resist active attacks by jointly designing the information reconciliation and privacy amplification phases.Extensive real-world experiments are conducted to test the effectiveness and robustness of our scheme.展开更多
Key frame extraction based on sparse coding can reduce the redundancy of continuous frames and concisely express the entire video.However,how to develop a key frame extraction algorithm that can automatically extract ...Key frame extraction based on sparse coding can reduce the redundancy of continuous frames and concisely express the entire video.However,how to develop a key frame extraction algorithm that can automatically extract a few frames with a low reconstruction error remains a challenge.In this paper,we propose a novel model of structured sparse-codingbased key frame extraction,wherein a nonconvex group log-regularizer is used with strong sparsity and a low reconstruction error.To automatically extract key frames,a decomposition scheme is designed to separate the sparse coefficient matrix by rows.The rows enforced by the nonconvex group log-regularizer become zero or nonzero,leading to the learning of the structured sparse coefficient matrix.To solve the nonconvex problems due to the log-regularizer,the difference of convex algorithm(DCA)is employed to decompose the log-regularizer into the difference of two convex functions related to the l1 norm,which can be directly obtained through the proximal operator.Therefore,an efficient structured sparse coding algorithm with the group log-regularizer for key frame extraction is developed,which can automatically extract a few frames directly from the video to represent the entire video with a low reconstruction error.Experimental results demonstrate that the proposed algorithm can extract more accurate key frames from most Sum Me videos compared to the stateof-the-art methods.Furthermore,the proposed algorithm can obtain a higher compression with a nearly 18% increase compared to sparse modeling representation selection(SMRS)and an 8% increase compared to SC-det on the VSUMM dataset.展开更多
With the vigorous development of national infrastructure construction and public information construction,video surveillance systems have gradually penetrated various fields.The current key frame extraction technology...With the vigorous development of national infrastructure construction and public information construction,video surveillance systems have gradually penetrated various fields.The current key frame extraction technology has inadequate target details and inaccurate judgment of local actions.Addressing this problem,a key frame extraction method based on fractional Fourier transform is proposed.This method obtained the phase spectra information of different orders by performing fractional Fourier transform on the surveillance video frames.Next,the method designed an adaptive algorithm based on the golden section point to select the transformation order.Then,the phase spectrum information of two adjacent frames was used to characterize the changes in the global and local motion states of the target.The final step was to extract key frames based on this.Experimental results show that,compared with the previous methods,the key frames extracted by the method proposed in this paper can correctly capture the changes in the global and local motion states of the target.展开更多
The key pose frames of a human motion pose sequence,play an important role in the compression,retrieval and semantic analysis of continuous human motion.The current available clustering methods in literatures are diff...The key pose frames of a human motion pose sequence,play an important role in the compression,retrieval and semantic analysis of continuous human motion.The current available clustering methods in literatures are difficult to determine the number of key pose frames automatically,and may destroy the postures’ temporal relationships while extracting key frames.To deal with this problem,this paper proposes a new key pose frames extraction method on the basis of 3D space distances of joint points and the improved X-means clustering algorithm.According to the proposed extraction method,the final key pose frame sequence could be obtained by describing the posture of human body with space distance of particular joint points and then the time-constraint X-mean algorithm is applied to cluster and filtrate the posture sequence.The experimental results show that the proposed method can automatically determine the number of key frames and save the temporal characteristics of motion frames according to the motion pose sequence.展开更多
With the explosive growth of surveillance video data,browsing videos quickly and effectively has become an urgent problem.Video key frame extraction has received widespread attention as an effective solution.However,a...With the explosive growth of surveillance video data,browsing videos quickly and effectively has become an urgent problem.Video key frame extraction has received widespread attention as an effective solution.However,accurately capturing the local motion state changes of moving objects in the video is still challenging in key frame extraction.The target center offset can reflect the change of its motion state.This observation proposed a novel key frame extraction method based on moving objects center offset in this paper.The proposed method utilizes the center offset to obtain the global and local motion state information of moving objects,and meanwhile,selects the video frame where the center offset curve changes suddenly as the key frame.Such processing effectively overcomes the inaccuracy of traditional key frame extraction methods.Initially,extracting the center point of each frame.Subsequently,calculating the center point offset of each frame and forming the center offset curve by connecting the center offset of each frame.Finally,extracting candidate key frames and optimizing them to generate final key frames.The experimental results demonstrate that the proposed method outperforms contrast methods to capturing the local motion state changes of moving objects.展开更多
In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary...In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.展开更多
A new method for complex activity recognition in videos by key frames was presented. The progressive bisection strategy(PBS) was employed to divide the complex activity into a series of simple activities and the key f...A new method for complex activity recognition in videos by key frames was presented. The progressive bisection strategy(PBS) was employed to divide the complex activity into a series of simple activities and the key frames representing the simple activities were extracted by the self-splitting competitive learning(SSCL) algorithm. A new similarity criterion of complex activities was defined. Besides the regular visual factor, the order factor and the interference factor measuring the timing matching relationship of the simple activities and the discontinuous matching relationship of the simple activities respectively were considered. On these bases, the complex human activity recognition could be achieved by calculating their similarities. The recognition error was reduced compared with other methods when ignoring the recognition of simple activities. The proposed method was tested and evaluated on the self-built broadcast gymnastic database and the dancing database. The experimental results prove the superior efficiency.展开更多
Pornographic image/video recognition plays a vital role in network information surveillance and management. In this paper, its key techniques, such as skin detection, key frame extraction, and classifier design, etc.,...Pornographic image/video recognition plays a vital role in network information surveillance and management. In this paper, its key techniques, such as skin detection, key frame extraction, and classifier design, etc., are studied in compressed domain. A skin detection method based on data-mining in compressed domain is proposed firstly and achieves the higher detection accuracy as well as higher speed. Then, a cascade scheme of pornographic image recognition based on selective decision tree ensemble is proposed in order to improve both the speed and accuracy of recognition. A pornographic video oriented key frame extraction solution in compressed domain and an approach of pornographic video recognition are discussed respectively in the end.展开更多
In video information retrieval, key frame extraction has been rec ognized as one of the important research issues. Although much progress has been made, the existing approaches are either computationally expensive or ...In video information retrieval, key frame extraction has been rec ognized as one of the important research issues. Although much progress has been made, the existing approaches are either computationally expensive or ineffective in capturing salient visual content. In this paper, we first discuss the importance of key frame extraction and then briefly review and evaluate the existing approaches. To overcome the shortcomings of the existing approaches, we introduce a new algorithm for key frame extraction based on unsupervised clustering. Meanwhile, we provide a feedback chain to adjust the granularity of the extraction result. The proposed algorithm is both computationally simple and able to capture the visual content.The efficiency and effectiveness are validated by large amount of real-world videos.展开更多
The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treat...The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods.展开更多
Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction...Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction,robot vision,etc.Though considerable improvements have been made in recent days,design of an effective and accurate action recognition model is yet a difficult process owing to the existence of different obstacles such as variations in camera angle,occlusion,background,movement speed,and so on.From the literature,it is observed that hard to deal with the temporal dimension in the action recognition process.Convolutional neural network(CNN)models could be used widely to solve this.With this motivation,this study designs a novel key point extraction with deep convolutional neural networks based pose estimation(KPE-DCNN)model for activity recognition.The KPE-DCNN technique initially converts the input video into a sequence of frames followed by a three stage process namely key point extraction,hyperparameter tuning,and pose estimation.In the keypoint extraction process an OpenPose model is designed to compute the accurate key-points in the human pose.Then,an optimal DCNN model is developed to classify the human activities label based on the extracted key points.For improving the training process of the DCNN technique,RMSProp optimizer is used to optimally adjust the hyperparameters such as learning rate,batch size,and epoch count.The experimental results tested using benchmark dataset like UCF sports dataset showed that KPE-DCNN technique is able to achieve good results compared with benchmark algorithms like CNN,DBN,SVM,STAL,T-CNN and so on.展开更多
Key information extraction can reduce the dimensional effects while evaluating the correct preferences of users during semantic data analysis.Currently,the classifiers are used to maximize the performance of web-page ...Key information extraction can reduce the dimensional effects while evaluating the correct preferences of users during semantic data analysis.Currently,the classifiers are used to maximize the performance of web-page recommendation in terms of precision and satisfaction.The recent method disambiguates contextual sentiment using conceptual prediction with robustness,however the conceptual prediction method is not able to yield the optimal solution.Context-dependent terms are primarily evaluated by constructing linear space of context features,presuming that if the terms come together in certain consumerrelated reviews,they are semantically reliant.Moreover,the more frequently they coexist,the greater the semantic dependency is.However,the influence of the terms that coexist with each other can be part of the frequency of the terms of their semantic dependence,as they are non-integrative and their individual meaning cannot be derived.In this work,we consider the strength of a term and the influence of a term as a combinatorial optimization,called Combinatorial Optimized Linear Space Knapsack for Information Retrieval(COLSK-IR).The COLSK-IR is considered as a knapsack problem with the total weight being the“term influence”or“influence of term”and the total value being the“term frequency”or“frequency of term”for semantic data analysis.The method,by which the term influence and the term frequency are considered to identify the optimal solutions,is called combinatorial optimizations.Thus,we choose the knapsack for performing an integer programming problem and perform multiple experiments using the linear space through combinatorial optimization to identify the possible optimum solutions.It is evident from our experimental results that the COLSK-IR provides better results than previous methods to detect strongly dependent snippets with minimum ambiguity that are related to inter-sentential context during semantic data analysis.展开更多
This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveill...This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveillance videos on demand through video streaming over mobile communication networks. The intelligent video analysis includes moving object detection/tracking and key frame selection which can browse useful video clips. The communication networking services, comprising video transcoding, multimedia messaging, and mobile video streaming, transmit surveillance information into mobile appliances. Moving object detection is achieved by background subtraction and particle filter tracking. Key frame selection, which aims to deliver an alarm to a mobile client using multimedia messaging service accompanied with an extracted clear frame, is reached by devising a weighted importance criterion considering object clarity and face appearance. Besides, a spatial- domain cascaded transcoder is developed to convert the filtered image sequence of detected objects into the mobile video streaming format. Experimental results show that the system can successfully detect all events of moving objects for a complex surveillance scene, choose very appropriate key frames for users, and transcode the images with a high power signal-to-noise ratio (PSNR).展开更多
This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Fo...This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Four of the best-known analog modulation types are considered namely: amplitude modulation (AM), double sideband (DSB) modulation, single sideband (SSB) modulation and frequency modulation (FM). Computer simulations of the four modulated signals are carried out using MATLAB. MATLAB code is used in simulating the analog signals as well as the power spectral density of each of the analog modulated signals. In achieving an accurate classification of each of the modulated signals, extensive simulations are performed for the training of the artificial neural network. The results of the study show accurate and correct performance of the developed automatic modulation recognition with average success rate above 99.5%.展开更多
Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of ...Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of road scenes is crucial for reference in asset management,construction,and maintenance.Light detection and ranging(Li DAR)technology is increasingly employed to generate high-quality point clouds for road inventory.In this paper,we specifically investigate the use of Li DAR data for road 3D modeling.The purpose of this review is to provide references about the existing work on the road 3D modeling based on Li DAR point clouds,critically discuss them,and provide challenges for further study.Besides,we introduce modeling standards for roads and discuss the components,types,and distinctions of various Li DAR measurement systems.Then,we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction.Furthermore,we systematically introduce point cloud-based 3D modeling methods,namely,parametric modeling and surface reconstruction.Parameters and rules are used to define model components based on geometric and non-geometric information,whereas surface modeling is conducted through individual faces within its geometry.Finally,we discuss and summarize future research directions in this field.This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on Li DAR point clouds.展开更多
Multi-party applications are becoming popular due to the development of mobile smart devices. In this work, we explore Secure Device Pairing (SDP), a novel pairing mechanism, which allows users to use smart watches ...Multi-party applications are becoming popular due to the development of mobile smart devices. In this work, we explore Secure Device Pairing (SDP), a novel pairing mechanism, which allows users to use smart watches to detect the handshake between users, and use the shaking information to create security keys that are highly random. Thus, we perform device pairing without complicated operations. SDP dynamically adjusts the sensor's sampling frequency and uses different classifiers at varying stages to save the energy. A multi-level quantization algorithm is used to maximize the mutual information between two communicating entities without information leakage. We evaluate the main modules of SDP with 1800 sets of handshake data. Results show that the recognition accuracy of the handshake detection algorithm is 98.2%, and the power consumption is only 1/3 of that of the single sampling frequency classifier.展开更多
Engineering and research teams often develop new products and technologies by referring to inventions described in patent databases. Efficient patent analysis builds R&D knowledge, reduces new product development tim...Engineering and research teams often develop new products and technologies by referring to inventions described in patent databases. Efficient patent analysis builds R&D knowledge, reduces new product development time, increases market success, and reduces potential patent infringement. Thus, it is beneficial to automatically and systematically extract information from patent documents in order to improve knowledge sharing and collaboration among R&D team members. In this research, patents are summarized using a combined ontology based and TF-IDF concept clustering approach. The ontology captures the general knowledge and core meaning of patents in a given domain. Then, the proposed methodology extracts, clusters, and integrates the content of a patent to derive a summary and a cluster tree diagram of key terms. Patents from the International Patent Classification (IPC) codes B25C, B25D, B25F (categories for power hand tools) and B24B, C09G and H011 (categories for chemical mechanical polishing) are used as case studies to evaluate the compression ratio, retention ratio, and classification accuracy of the summarization results. The evaluation uses statistics to represent the summary generation and its compression ratio, the ontology based keyword extraction retention ratio, and the summary classification accuracy. The results show that the ontology based approach yields about the same compression ratio as previous non-ontology based research but yields on average an 11% improvement for the retention ratio and a 14% improvement for classification accuracy.展开更多
基金supported in part by the National Natural Science Foundation of China(No.61902051)the Key R&D Program of Liaoning Province under Grant 2020JH2/10100038.
文摘The Sixth-Generation(6G)enhances the Industrial Internet of Things(IIoT)communication efficiency and further raises security requirements.It is crucial to construct a post-quantum security communication channel between any pair of industrial equipment.Recent work shows that two legitimate devices can directly extract symmetrical secret keys in information-theoretic secure by measuring their common wireless channels.However,existing schemes may cause a high bit mismatch rate in IIoT with high noise.In addition,the physical layer key extraction scheme widely uses passive attack assumptions,which also contradicts the high-security requirements of IIoT.By analyzing and modeling IIoT systems and channels,we propose an Adaptive and Robust Secret Key Extraction scheme(ARSKE)from high noise wireless channels in 6G-enabled IIoT.To eliminate the non-reciprocity of the wireless channel,we design a smoothing method as the preprocessing module.Then,we propose a Robust Secure Reconciliation technique that can effectively resist active attacks by jointly designing the information reconciliation and privacy amplification phases.Extensive real-world experiments are conducted to test the effectiveness and robustness of our scheme.
基金supported in part by the National Natural Science Foundation of China(61903090,61727810,62073086,62076077,61803096,U191140003)the Guangzhou Science and Technology Program Project(202002030289)Japan Society for the Promotion of Science(JSPS)KAKENHI(18K18083)。
文摘Key frame extraction based on sparse coding can reduce the redundancy of continuous frames and concisely express the entire video.However,how to develop a key frame extraction algorithm that can automatically extract a few frames with a low reconstruction error remains a challenge.In this paper,we propose a novel model of structured sparse-codingbased key frame extraction,wherein a nonconvex group log-regularizer is used with strong sparsity and a low reconstruction error.To automatically extract key frames,a decomposition scheme is designed to separate the sparse coefficient matrix by rows.The rows enforced by the nonconvex group log-regularizer become zero or nonzero,leading to the learning of the structured sparse coefficient matrix.To solve the nonconvex problems due to the log-regularizer,the difference of convex algorithm(DCA)is employed to decompose the log-regularizer into the difference of two convex functions related to the l1 norm,which can be directly obtained through the proximal operator.Therefore,an efficient structured sparse coding algorithm with the group log-regularizer for key frame extraction is developed,which can automatically extract a few frames directly from the video to represent the entire video with a low reconstruction error.Experimental results demonstrate that the proposed algorithm can extract more accurate key frames from most Sum Me videos compared to the stateof-the-art methods.Furthermore,the proposed algorithm can obtain a higher compression with a nearly 18% increase compared to sparse modeling representation selection(SMRS)and an 8% increase compared to SC-det on the VSUMM dataset.
基金supported by the National Natural Science Foundation of China(Nos.61702347,62027801 and 61972267)Natural Science Fund of Hebei Province(No.F2017210161),and Hebei Province Graduate Student Innovation Ability Training Funding Project.
文摘With the vigorous development of national infrastructure construction and public information construction,video surveillance systems have gradually penetrated various fields.The current key frame extraction technology has inadequate target details and inaccurate judgment of local actions.Addressing this problem,a key frame extraction method based on fractional Fourier transform is proposed.This method obtained the phase spectra information of different orders by performing fractional Fourier transform on the surveillance video frames.Next,the method designed an adaptive algorithm based on the golden section point to select the transformation order.Then,the phase spectrum information of two adjacent frames was used to characterize the changes in the global and local motion states of the target.The final step was to extract key frames based on this.Experimental results show that,compared with the previous methods,the key frames extracted by the method proposed in this paper can correctly capture the changes in the global and local motion states of the target.
基金Supported by the National Natural Science Foundation of China(61303127)Project of Science and Technology Department of Sichuan Province(2014SZ0223,2014GZ0100,2015GZ0212)+1 种基金Key Program of Education Department of Sichuan Province(11ZA130,13ZA0169)Postgraduate Innovation Fund Project by Southwest University of Science and Technology(15ycx057)
文摘The key pose frames of a human motion pose sequence,play an important role in the compression,retrieval and semantic analysis of continuous human motion.The current available clustering methods in literatures are difficult to determine the number of key pose frames automatically,and may destroy the postures’ temporal relationships while extracting key frames.To deal with this problem,this paper proposes a new key pose frames extraction method on the basis of 3D space distances of joint points and the improved X-means clustering algorithm.According to the proposed extraction method,the final key pose frame sequence could be obtained by describing the posture of human body with space distance of particular joint points and then the time-constraint X-mean algorithm is applied to cluster and filtrate the posture sequence.The experimental results show that the proposed method can automatically determine the number of key frames and save the temporal characteristics of motion frames according to the motion pose sequence.
基金This work was supported by the National Nature Science Foundation of China(Grant No.61702347,61772225)Natural Science Foundation of Hebei Province(Grant No.F2017210161).
文摘With the explosive growth of surveillance video data,browsing videos quickly and effectively has become an urgent problem.Video key frame extraction has received widespread attention as an effective solution.However,accurately capturing the local motion state changes of moving objects in the video is still challenging in key frame extraction.The target center offset can reflect the change of its motion state.This observation proposed a novel key frame extraction method based on moving objects center offset in this paper.The proposed method utilizes the center offset to obtain the global and local motion state information of moving objects,and meanwhile,selects the video frame where the center offset curve changes suddenly as the key frame.Such processing effectively overcomes the inaccuracy of traditional key frame extraction methods.Initially,extracting the center point of each frame.Subsequently,calculating the center point offset of each frame and forming the center offset curve by connecting the center offset of each frame.Finally,extracting candidate key frames and optimizing them to generate final key frames.The experimental results demonstrate that the proposed method outperforms contrast methods to capturing the local motion state changes of moving objects.
文摘In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.
基金Project(50808025) supported by the National Natural Science Foundation of ChinaProject(20090162110057) supported by the Doctoral Fund of Ministry of Education,China
文摘A new method for complex activity recognition in videos by key frames was presented. The progressive bisection strategy(PBS) was employed to divide the complex activity into a series of simple activities and the key frames representing the simple activities were extracted by the self-splitting competitive learning(SSCL) algorithm. A new similarity criterion of complex activities was defined. Besides the regular visual factor, the order factor and the interference factor measuring the timing matching relationship of the simple activities and the discontinuous matching relationship of the simple activities respectively were considered. On these bases, the complex human activity recognition could be achieved by calculating their similarities. The recognition error was reduced compared with other methods when ignoring the recognition of simple activities. The proposed method was tested and evaluated on the self-built broadcast gymnastic database and the dancing database. The experimental results prove the superior efficiency.
基金Supported by the National Natural Science Foundation of China (No.60772069)863 High-Tech Project (2008AA01A313)
文摘Pornographic image/video recognition plays a vital role in network information surveillance and management. In this paper, its key techniques, such as skin detection, key frame extraction, and classifier design, etc., are studied in compressed domain. A skin detection method based on data-mining in compressed domain is proposed firstly and achieves the higher detection accuracy as well as higher speed. Then, a cascade scheme of pornographic image recognition based on selective decision tree ensemble is proposed in order to improve both the speed and accuracy of recognition. A pornographic video oriented key frame extraction solution in compressed domain and an approach of pornographic video recognition are discussed respectively in the end.
文摘In video information retrieval, key frame extraction has been rec ognized as one of the important research issues. Although much progress has been made, the existing approaches are either computationally expensive or ineffective in capturing salient visual content. In this paper, we first discuss the importance of key frame extraction and then briefly review and evaluate the existing approaches. To overcome the shortcomings of the existing approaches, we introduce a new algorithm for key frame extraction based on unsupervised clustering. Meanwhile, we provide a feedback chain to adjust the granularity of the extraction result. The proposed algorithm is both computationally simple and able to capture the visual content.The efficiency and effectiveness are validated by large amount of real-world videos.
基金supported by the National Key R&D Program of China(2018YFC0830200,Zhang,B,www.most.gov.cn)the Fundamental Research Funds for the Central Universities(2242018S30021 and 2242017S30023,Zhou S,www.seu.edu.cn)the Open Research Fund from Key Laboratory of Computer Network and Information Integration In Southeast University,Ministry of Education,China(3209012001C3,Zhang B,www.seu.edu.cn).
文摘The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods.
文摘Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction,robot vision,etc.Though considerable improvements have been made in recent days,design of an effective and accurate action recognition model is yet a difficult process owing to the existence of different obstacles such as variations in camera angle,occlusion,background,movement speed,and so on.From the literature,it is observed that hard to deal with the temporal dimension in the action recognition process.Convolutional neural network(CNN)models could be used widely to solve this.With this motivation,this study designs a novel key point extraction with deep convolutional neural networks based pose estimation(KPE-DCNN)model for activity recognition.The KPE-DCNN technique initially converts the input video into a sequence of frames followed by a three stage process namely key point extraction,hyperparameter tuning,and pose estimation.In the keypoint extraction process an OpenPose model is designed to compute the accurate key-points in the human pose.Then,an optimal DCNN model is developed to classify the human activities label based on the extracted key points.For improving the training process of the DCNN technique,RMSProp optimizer is used to optimally adjust the hyperparameters such as learning rate,batch size,and epoch count.The experimental results tested using benchmark dataset like UCF sports dataset showed that KPE-DCNN technique is able to achieve good results compared with benchmark algorithms like CNN,DBN,SVM,STAL,T-CNN and so on.
文摘Key information extraction can reduce the dimensional effects while evaluating the correct preferences of users during semantic data analysis.Currently,the classifiers are used to maximize the performance of web-page recommendation in terms of precision and satisfaction.The recent method disambiguates contextual sentiment using conceptual prediction with robustness,however the conceptual prediction method is not able to yield the optimal solution.Context-dependent terms are primarily evaluated by constructing linear space of context features,presuming that if the terms come together in certain consumerrelated reviews,they are semantically reliant.Moreover,the more frequently they coexist,the greater the semantic dependency is.However,the influence of the terms that coexist with each other can be part of the frequency of the terms of their semantic dependence,as they are non-integrative and their individual meaning cannot be derived.In this work,we consider the strength of a term and the influence of a term as a combinatorial optimization,called Combinatorial Optimized Linear Space Knapsack for Information Retrieval(COLSK-IR).The COLSK-IR is considered as a knapsack problem with the total weight being the“term influence”or“influence of term”and the total value being the“term frequency”or“frequency of term”for semantic data analysis.The method,by which the term influence and the term frequency are considered to identify the optimal solutions,is called combinatorial optimizations.Thus,we choose the knapsack for performing an integer programming problem and perform multiple experiments using the linear space through combinatorial optimization to identify the possible optimum solutions.It is evident from our experimental results that the COLSK-IR provides better results than previous methods to detect strongly dependent snippets with minimum ambiguity that are related to inter-sentential context during semantic data analysis.
文摘This paper proposes a mobile video surveillance system consisting of intelligent video analysis and mobile communication networking. This multilevel distillation approach helps mobile users monitor tremendous surveillance videos on demand through video streaming over mobile communication networks. The intelligent video analysis includes moving object detection/tracking and key frame selection which can browse useful video clips. The communication networking services, comprising video transcoding, multimedia messaging, and mobile video streaming, transmit surveillance information into mobile appliances. Moving object detection is achieved by background subtraction and particle filter tracking. Key frame selection, which aims to deliver an alarm to a mobile client using multimedia messaging service accompanied with an extracted clear frame, is reached by devising a weighted importance criterion considering object clarity and face appearance. Besides, a spatial- domain cascaded transcoder is developed to convert the filtered image sequence of detected objects into the mobile video streaming format. Experimental results show that the system can successfully detect all events of moving objects for a complex surveillance scene, choose very appropriate key frames for users, and transcode the images with a high power signal-to-noise ratio (PSNR).
文摘This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Four of the best-known analog modulation types are considered namely: amplitude modulation (AM), double sideband (DSB) modulation, single sideband (SSB) modulation and frequency modulation (FM). Computer simulations of the four modulated signals are carried out using MATLAB. MATLAB code is used in simulating the analog signals as well as the power spectral density of each of the analog modulated signals. In achieving an accurate classification of each of the modulated signals, extensive simulations are performed for the training of the artificial neural network. The results of the study show accurate and correct performance of the developed automatic modulation recognition with average success rate above 99.5%.
基金supported by the projects found by the Jiangsu Transportation Science and Technology Project under Grants 2020Y191(1)Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grants KYCX23_0294。
文摘Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of road scenes is crucial for reference in asset management,construction,and maintenance.Light detection and ranging(Li DAR)technology is increasingly employed to generate high-quality point clouds for road inventory.In this paper,we specifically investigate the use of Li DAR data for road 3D modeling.The purpose of this review is to provide references about the existing work on the road 3D modeling based on Li DAR point clouds,critically discuss them,and provide challenges for further study.Besides,we introduce modeling standards for roads and discuss the components,types,and distinctions of various Li DAR measurement systems.Then,we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction.Furthermore,we systematically introduce point cloud-based 3D modeling methods,namely,parametric modeling and surface reconstruction.Parameters and rules are used to define model components based on geometric and non-geometric information,whereas surface modeling is conducted through individual faces within its geometry.Finally,we discuss and summarize future research directions in this field.This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on Li DAR point clouds.
基金supported in part by the National Natural Science Foundation of China (Nos. 61472219 and 61672372)Shaanxi NSF (No. 2017JM6109)
文摘Multi-party applications are becoming popular due to the development of mobile smart devices. In this work, we explore Secure Device Pairing (SDP), a novel pairing mechanism, which allows users to use smart watches to detect the handshake between users, and use the shaking information to create security keys that are highly random. Thus, we perform device pairing without complicated operations. SDP dynamically adjusts the sensor's sampling frequency and uses different classifiers at varying stages to save the energy. A multi-level quantization algorithm is used to maximize the mutual information between two communicating entities without information leakage. We evaluate the main modules of SDP with 1800 sets of handshake data. Results show that the recognition accuracy of the handshake detection algorithm is 98.2%, and the power consumption is only 1/3 of that of the single sampling frequency classifier.
基金supported by National Science Council research grants
文摘Engineering and research teams often develop new products and technologies by referring to inventions described in patent databases. Efficient patent analysis builds R&D knowledge, reduces new product development time, increases market success, and reduces potential patent infringement. Thus, it is beneficial to automatically and systematically extract information from patent documents in order to improve knowledge sharing and collaboration among R&D team members. In this research, patents are summarized using a combined ontology based and TF-IDF concept clustering approach. The ontology captures the general knowledge and core meaning of patents in a given domain. Then, the proposed methodology extracts, clusters, and integrates the content of a patent to derive a summary and a cluster tree diagram of key terms. Patents from the International Patent Classification (IPC) codes B25C, B25D, B25F (categories for power hand tools) and B24B, C09G and H011 (categories for chemical mechanical polishing) are used as case studies to evaluate the compression ratio, retention ratio, and classification accuracy of the summarization results. The evaluation uses statistics to represent the summary generation and its compression ratio, the ontology based keyword extraction retention ratio, and the summary classification accuracy. The results show that the ontology based approach yields about the same compression ratio as previous non-ontology based research but yields on average an 11% improvement for the retention ratio and a 14% improvement for classification accuracy.