With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to res...With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart.展开更多
Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integ...Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.展开更多
The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT de...The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT devices has placed significant strain on the 5G Core network(5GC)control plane.To address this issue,the 3rd Gener-ation Partnership Project(3GPP)first proposed a Service-Based Architecture(SBA),intending to create a flexible,scalable,and agile cloud-native 5GC.However,considering the coupling of protocol states and functions,there are still many challenges to fully utilize the benefits of the cloud computing and orchestrate the 5GC in a cloud-native manner.We propose a Message-Level StateLess Design(ML-SLD)to provide a cloud-native 5GC from an architectural standpoint in this paper.Firstly,we propose an innovative mechanism for servitization of the N2 interface to maintain the connection between Radio Access Network(RAN)and the 5GC,avoiding interruptions and dropouts of large-scale user data.Furthermore,we propose an On-demand Message Forwarding(OMF)al-gorithm to reduce the impact of cloud fluctuations on the performance of cloud-native 5GC.Finally,we create a prototype that is based on the OpenAirInterface(OAI)5G core network projects,with all Network Functions(NFs)packaged in dockers and deployed in a kubernetes-based cloud environment.Several experiments have been built with UERANSIM and Chaosblade simulation tools.The findings demonstrate the viability and efficiency of our proposed methods.展开更多
The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era,...The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.展开更多
Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several securi...Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several security problems,e.g.key leakage,impersonation attack,MitM attack and single point of failure.In this paper,a blockchain based asymmetric authentication and key agreement protocol(BC-AKA)is proposed for distributed 5G core network.In particular,the key used in the authentication process is replaced from a symmetric key to an asymmetric key,and the database used to store keys in conventional 5G core network is replaced with a blockchain network.A proof of concept system for distributed 5G core network is built based on Ethereum and ECC-Secp256 k1,and the efficiency and effectiveness of the proposed scheme are verified by the experiment results.展开更多
Based on the latest research findings of 3GPP on network sharing, this paper introduces 4 solutions to WCDMA 3G network sharing: site sharing, common network sharing, geographically split network sharing, and radio ac...Based on the latest research findings of 3GPP on network sharing, this paper introduces 4 solutions to WCDMA 3G network sharing: site sharing, common network sharing, geographically split network sharing, and radio access network sharing. It also analyzes the key network sharing technologies, including the lu-Flex function in Release 5, the UTRAN sharing mechanism in the connected mode in Release 5 and the mechanism of network sharing support enhancement in Release 6.展开更多
Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that ...Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that Envisaged 5G(E5G)mobile technology would be operational in certain developed countries by 2023.The Internet of Things(IoTs)will transform how humans live when combined with smart and integrated sensing devices,such as in-home sensing devices.Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology.High output,reduced latency,highly reliable,greater scalability,high performance,capacity,bandwidth efficiency,virtual open-air transmission,and efficient energy mobile wireless communications are all being investigated currently.In this work,a comprehensive path for addressing the difficulties and developments associated with 5G mobile technology is provided.The debate and description of a complete analysis of current situations,certain characteristics and prospective scenarios,important technologies,problems and advances,and spectrum allocation of envisioned 5G mobile technologies are provided.Furthermore,this paper analyzes the most notable elements of 5G mobile technology,such as Cognitive Radio(CR),flexibility,accessibility,and cloud-based service offers,which will assure 5G mobile technology’s dominance as the main protocol for international communication.Eventually,this paper provides a method for integrating CR with current wireless communication systems,the necessity for further evolution of the E5G network,and the need for comprehensive consideration of architecture evolution and function enhancement to enhance the E5G mobile technologies.展开更多
With the continuous enrichment of mobile communication application scenarios in the future, the traditional macro-cellular-based mobile communication network architecture will be difficult to meet the explosive growth...With the continuous enrichment of mobile communication application scenarios in the future, the traditional macro-cellular-based mobile communication network architecture will be difficult to meet the explosive growth in demand for communications services.展开更多
The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technica...The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.展开更多
We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based ...We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based on 5G technology,which provides a view of common satellite network slicing and supports flexible network deployment between the satellite and the ground.Specifically,considering the limited satellite network resource and the characteristics of the satellite channel,we propose a novel satellite E2E network slicing architecture.Therein,the deployment of the network functions between the satellite and the ground is coordinately considered.Subsequently,the classification and the isolation technologies of satellite network sub-slices are proposed adaptively based on 5G technology to support resource allocation on demand.Then,we develop the management technologies for the satellite E2E network slicing including slicing key performance indicator(KPI) design,slicing deployment,and slicing management.Finally,the analysis of the challenges and future work shows the potential research in the future.展开更多
To improve the quality of education,the application of various forms of teaching and learning tools supported by technology is becoming increasingly widespread in education.Especially the internet communication and te...To improve the quality of education,the application of various forms of teaching and learning tools supported by technology is becoming increasingly widespread in education.Especially the internet communication and technology are changing the education era swiftly with the advent of fifth-generation technology.Research about blended learning(BL)based on 5G networks is emerging.However,few studies have explained how 5G network technology helps the BL teaching model be better applied to teaching.Therefore,this paper tries to sort out the development process of BL teaching mode,summarize the challenges of BL learning in teaching,and explore how the development of the 5G era will positively impact BL teaching mode.展开更多
With the commercialization of 5th-generation mobile communications(5G)networks,a large-scale internet of things(IoT)environment is being built.Security is becoming increasingly crucial in 5G network environments due t...With the commercialization of 5th-generation mobile communications(5G)networks,a large-scale internet of things(IoT)environment is being built.Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service(DDoS)attacks across vast IoT devices.Recently,research on automated intrusion detection using machine learning(ML)for 5G environments has been actively conducted.However,5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data.If this data is used to train an ML model,it will likely suffer from generalization errors due to not training enough different features on the attack data.Therefore,this paper aims to study a training method to mitigate the generalization error problem of the ML model that classifies IoT DDoS attacks even under conditions of insufficient and imbalanced 5G traffic.We built a 5G testbed to construct a 5G dataset for training to solve the problem of insufficient data.To solve the imbalance problem,synthetic minority oversampling technique(SMOTE)and generative adversarial network(GAN)-based conditional tabular GAN(CTGAN)of data augmentation were used.The performance of the trained ML models was compared and meaningfully analyzed regarding the generalization error problem.The experimental results showed that CTGAN decreased the accuracy and f1-score compared to the Baseline.Still,regarding the generalization error,the difference between the validation and test results was reduced by at least 1.7 and up to 22.88 times,indicating an improvement in the problem.This result suggests that the ML model training method that utilizes CTGANs to augment attack data for training data in the 5G environment mitigates the generalization error problem.展开更多
Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks.Recently,Liu et al.(Quantum Information Processing 18(8):1-10,2019)proposed a mu...Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks.Recently,Liu et al.(Quantum Information Processing 18(8):1-10,2019)proposed a multi-party quantum key agreement protocol based on four-qubit cluster states was proposed.The aim of their protocol is to agree on a shared secret key among multiple remote participants.Liu et al.employed four-qubit cluster states to be the quantum resources and the X operation to securely share a secret key.In addition,Liu et al.’s protocol guarantees that each participant makes an equal contribution to the final key.The authors also claimed that the proposed protocol is secure against participant attack and dishonest participants cannot generate the final shared key alone.However,we show here that Liu et al.protocol is insecure against a collusive attack,where dishonest participants can retrieve the private inputs of a trustworthy participant without being caught.Additionally,the corresponding modifications are presented to address these security flaws in Liu et al.’s protocol.展开更多
As a major component of thefifth-generation(5G)wireless networks,network densification greatly increases the network capacity by adding more cell sites into the network.However,the densified network increases the hand...As a major component of thefifth-generation(5G)wireless networks,network densification greatly increases the network capacity by adding more cell sites into the network.However,the densified network increases the handover frequency of fast-moving mobile users,like vehicles.Thus,seamless handover with security provision is highly desirable in 5G networks.The third generation partnership project(3GPP)has been working on standardization of the handover procedure in 5G networks to meet the stringent efficiency and security requirement.However,the existing handover authentication process in 5G networks has securityflaws,i.e.vulnerable to replay and de-synchronization attacks,and cannot provide perfect forward secrecy.In this paper,we propose a secure and efficient handover authentication and key management protocol utilizing the Chinese remainder theory.The proposed scheme preserves the majority part of the original 5G system architecture defined by 3GPP,thus can be easily implemented in practice.Formal security analysis based on BAN-logic shows that the proposed scheme achieves secure mutual authentication and can remedy some security flaws in original 5G handover process.Performance analysis shows that the proposed protocol has lower communication overhead and computation overhead compared with other handover authentication schemes.展开更多
5G has been developing at high speed since 2012 and has become a global economic driver. In this paper, we offer a survey of 5G covering visions, requirements, roadmap, key technologies, standardization, frequency man...5G has been developing at high speed since 2012 and has become a global economic driver. In this paper, we offer a survey of 5G covering visions, requirements, roadmap, key technologies, standardization, frequency management, technology trials, industrial ecology, and a list of main 5G contributors. We also point out the contributions to 5G from China, aiming to be 'globally leading in 5G' by acting as a main 5G contributor in standardization and promoting/enhancing the Chinese 5G industry. Finally, progress on 5G is reviewed mixed with our rethinking of 5G.展开更多
文摘With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart.
基金supported by the National Key R&D Program of China(2020YFB1805500)National Natural Science Foundation of China(61922017,62032003 and 61921003)。
文摘Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.
基金funded by the National Key Research and Development Program of China under Grant 2019YFB1803301Beijing Natural Science Foundation(L202002).
文摘The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT devices has placed significant strain on the 5G Core network(5GC)control plane.To address this issue,the 3rd Gener-ation Partnership Project(3GPP)first proposed a Service-Based Architecture(SBA),intending to create a flexible,scalable,and agile cloud-native 5GC.However,considering the coupling of protocol states and functions,there are still many challenges to fully utilize the benefits of the cloud computing and orchestrate the 5GC in a cloud-native manner.We propose a Message-Level StateLess Design(ML-SLD)to provide a cloud-native 5GC from an architectural standpoint in this paper.Firstly,we propose an innovative mechanism for servitization of the N2 interface to maintain the connection between Radio Access Network(RAN)and the 5GC,avoiding interruptions and dropouts of large-scale user data.Furthermore,we propose an On-demand Message Forwarding(OMF)al-gorithm to reduce the impact of cloud fluctuations on the performance of cloud-native 5GC.Finally,we create a prototype that is based on the OpenAirInterface(OAI)5G core network projects,with all Network Functions(NFs)packaged in dockers and deployed in a kubernetes-based cloud environment.Several experiments have been built with UERANSIM and Chaosblade simulation tools.The findings demonstrate the viability and efficiency of our proposed methods.
基金supported by China Ministry of Education-CMCC Research Fund Project No.MCM20160104National Science and Technology Major Project No.No.2018ZX03001016+1 种基金Beijing Municipal Science and technology Commission Research Fund Project No.Z171100005217001Fundamental Research Funds for Central Universities NO.2018RC06
文摘The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.
基金supported by National Key Research and Development Program of China under Grant 2021YFE0205300Tianjin Natural Science Foundation(19JCYBJC15700)。
文摘Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several security problems,e.g.key leakage,impersonation attack,MitM attack and single point of failure.In this paper,a blockchain based asymmetric authentication and key agreement protocol(BC-AKA)is proposed for distributed 5G core network.In particular,the key used in the authentication process is replaced from a symmetric key to an asymmetric key,and the database used to store keys in conventional 5G core network is replaced with a blockchain network.A proof of concept system for distributed 5G core network is built based on Ethereum and ECC-Secp256 k1,and the efficiency and effectiveness of the proposed scheme are verified by the experiment results.
文摘Based on the latest research findings of 3GPP on network sharing, this paper introduces 4 solutions to WCDMA 3G network sharing: site sharing, common network sharing, geographically split network sharing, and radio access network sharing. It also analyzes the key network sharing technologies, including the lu-Flex function in Release 5, the UTRAN sharing mechanism in the connected mode in Release 5 and the mechanism of network sharing support enhancement in Release 6.
文摘Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that Envisaged 5G(E5G)mobile technology would be operational in certain developed countries by 2023.The Internet of Things(IoTs)will transform how humans live when combined with smart and integrated sensing devices,such as in-home sensing devices.Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology.High output,reduced latency,highly reliable,greater scalability,high performance,capacity,bandwidth efficiency,virtual open-air transmission,and efficient energy mobile wireless communications are all being investigated currently.In this work,a comprehensive path for addressing the difficulties and developments associated with 5G mobile technology is provided.The debate and description of a complete analysis of current situations,certain characteristics and prospective scenarios,important technologies,problems and advances,and spectrum allocation of envisioned 5G mobile technologies are provided.Furthermore,this paper analyzes the most notable elements of 5G mobile technology,such as Cognitive Radio(CR),flexibility,accessibility,and cloud-based service offers,which will assure 5G mobile technology’s dominance as the main protocol for international communication.Eventually,this paper provides a method for integrating CR with current wireless communication systems,the necessity for further evolution of the E5G network,and the need for comprehensive consideration of architecture evolution and function enhancement to enhance the E5G mobile technologies.
文摘With the continuous enrichment of mobile communication application scenarios in the future, the traditional macro-cellular-based mobile communication network architecture will be difficult to meet the explosive growth in demand for communications services.
文摘The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.
文摘We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based on 5G technology,which provides a view of common satellite network slicing and supports flexible network deployment between the satellite and the ground.Specifically,considering the limited satellite network resource and the characteristics of the satellite channel,we propose a novel satellite E2E network slicing architecture.Therein,the deployment of the network functions between the satellite and the ground is coordinately considered.Subsequently,the classification and the isolation technologies of satellite network sub-slices are proposed adaptively based on 5G technology to support resource allocation on demand.Then,we develop the management technologies for the satellite E2E network slicing including slicing key performance indicator(KPI) design,slicing deployment,and slicing management.Finally,the analysis of the challenges and future work shows the potential research in the future.
文摘To improve the quality of education,the application of various forms of teaching and learning tools supported by technology is becoming increasingly widespread in education.Especially the internet communication and technology are changing the education era swiftly with the advent of fifth-generation technology.Research about blended learning(BL)based on 5G networks is emerging.However,few studies have explained how 5G network technology helps the BL teaching model be better applied to teaching.Therefore,this paper tries to sort out the development process of BL teaching mode,summarize the challenges of BL learning in teaching,and explore how the development of the 5G era will positively impact BL teaching mode.
基金This work was supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-00796Research on Foundational Technologies for 6GAutonomous Security-by-Design toGuarantee Constant Quality of Security).
文摘With the commercialization of 5th-generation mobile communications(5G)networks,a large-scale internet of things(IoT)environment is being built.Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service(DDoS)attacks across vast IoT devices.Recently,research on automated intrusion detection using machine learning(ML)for 5G environments has been actively conducted.However,5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data.If this data is used to train an ML model,it will likely suffer from generalization errors due to not training enough different features on the attack data.Therefore,this paper aims to study a training method to mitigate the generalization error problem of the ML model that classifies IoT DDoS attacks even under conditions of insufficient and imbalanced 5G traffic.We built a 5G testbed to construct a 5G dataset for training to solve the problem of insufficient data.To solve the imbalance problem,synthetic minority oversampling technique(SMOTE)and generative adversarial network(GAN)-based conditional tabular GAN(CTGAN)of data augmentation were used.The performance of the trained ML models was compared and meaningfully analyzed regarding the generalization error problem.The experimental results showed that CTGAN decreased the accuracy and f1-score compared to the Baseline.Still,regarding the generalization error,the difference between the validation and test results was reduced by at least 1.7 and up to 22.88 times,indicating an improvement in the problem.This result suggests that the ML model training method that utilizes CTGANs to augment attack data for training data in the 5G environment mitigates the generalization error problem.
基金This project was financially supported by the Academy of Scientific Research and Technology(ASRT)in Egypt,under the project of Science Up,Grant no.6626.
文摘Quantum key agreement is a promising key establishing protocol that can play a significant role in securing 5G/6G communication networks.Recently,Liu et al.(Quantum Information Processing 18(8):1-10,2019)proposed a multi-party quantum key agreement protocol based on four-qubit cluster states was proposed.The aim of their protocol is to agree on a shared secret key among multiple remote participants.Liu et al.employed four-qubit cluster states to be the quantum resources and the X operation to securely share a secret key.In addition,Liu et al.’s protocol guarantees that each participant makes an equal contribution to the final key.The authors also claimed that the proposed protocol is secure against participant attack and dishonest participants cannot generate the final shared key alone.However,we show here that Liu et al.protocol is insecure against a collusive attack,where dishonest participants can retrieve the private inputs of a trustworthy participant without being caught.Additionally,the corresponding modifications are presented to address these security flaws in Liu et al.’s protocol.
文摘As a major component of thefifth-generation(5G)wireless networks,network densification greatly increases the network capacity by adding more cell sites into the network.However,the densified network increases the handover frequency of fast-moving mobile users,like vehicles.Thus,seamless handover with security provision is highly desirable in 5G networks.The third generation partnership project(3GPP)has been working on standardization of the handover procedure in 5G networks to meet the stringent efficiency and security requirement.However,the existing handover authentication process in 5G networks has securityflaws,i.e.vulnerable to replay and de-synchronization attacks,and cannot provide perfect forward secrecy.In this paper,we propose a secure and efficient handover authentication and key management protocol utilizing the Chinese remainder theory.The proposed scheme preserves the majority part of the original 5G system architecture defined by 3GPP,thus can be easily implemented in practice.Formal security analysis based on BAN-logic shows that the proposed scheme achieves secure mutual authentication and can remedy some security flaws in original 5G handover process.Performance analysis shows that the proposed protocol has lower communication overhead and computation overhead compared with other handover authentication schemes.
基金Project supported by the National Natural Science Foundation of China(No.61425012)
文摘5G has been developing at high speed since 2012 and has become a global economic driver. In this paper, we offer a survey of 5G covering visions, requirements, roadmap, key technologies, standardization, frequency management, technology trials, industrial ecology, and a list of main 5G contributors. We also point out the contributions to 5G from China, aiming to be 'globally leading in 5G' by acting as a main 5G contributor in standardization and promoting/enhancing the Chinese 5G industry. Finally, progress on 5G is reviewed mixed with our rethinking of 5G.