Objective:To investigate the inhibitory effect of curcumin on influenza virus HIN1 and H3N2 in vitro, Methods:The directly killing role of cureumin extract in vitro to influenza virus type A subtype H1N1 and H3N2 wa...Objective:To investigate the inhibitory effect of curcumin on influenza virus HIN1 and H3N2 in vitro, Methods:The directly killing role of cureumin extract in vitro to influenza virus type A subtype H1N1 and H3N2 was evaluated by the canine kidney cells (MDCK), Results:The largest non toxic concentration of curcumin extract was 12, 5g/L and the effective inhibitory concentration to H1N1 and H3N2 was 6, 25G/1 AND 1,56g/L respectively, Conclusion: Curcumin extract have directly killing effect on H1N1 and H3N2 infections.展开更多
The objective of this study is to investigate the immune-enhancing ability of viable and heat-killed Weissella cibaria JW15(JW15)isolated from Kimchi in RAW 264.7 macrophages.The immune effects were evaluated by measu...The objective of this study is to investigate the immune-enhancing ability of viable and heat-killed Weissella cibaria JW15(JW15)isolated from Kimchi in RAW 264.7 macrophages.The immune effects were evaluated by measuring the production of NO,cytokines,inflammatory enzyme,and activation of NF-κB.Viable JW15 executed higher activity on stimulating the release of TNF-αas well as activating NF-κB compared to that of heatkilled JW15.Additionally,viable and heat-killed JW15 significantly increased the production of NO,IL-6 and TNF-αmore than that of Lactobacillus rhamnosus GG(LGG).Furthermore,viable JW15 induced higher production of i NOS compared with that of viable LGG.Collectively,our finding indicates that viable JW15 had similar,if not more,immune-enhancing activities as heat-killed JW15.In addition,viable JW15 had higher immune-enhancing activity than commercial strain LGG.Therefore,viable JW15 has the potential to be used as a functional food to improve the host immune response.展开更多
Cryptotanshinone (CT), a major tanshinone of medicinal plant Salvia miltiorrhiza Bunge, demonstrated effective in vitro antibacterial activity against all oral bacteria tested in this experiment. The antibacterial act...Cryptotanshinone (CT), a major tanshinone of medicinal plant Salvia miltiorrhiza Bunge, demonstrated effective in vitro antibacterial activity against all oral bacteria tested in this experiment. The antibacterial activities of CT against oral bacteria were assessed using the checkerboard and time-kill methods to evaluate the synergistic effects of treatment with ampicillin or gentamicin. The CT was determined against oral pathogenic bacteria with MIC and MBC values ranging from 0.5 to 16 and 1 to 64 μg/mL;for am- picillin from 0.0313 to 16 and 0.125 to 32 μg/mL;for gentamicin from 2 to 256 and 4 to 512 μg/mL respectively. The range of MIC50 and MIC90 were 0.0625 - 8 μg/mL and 1 - 64 μg/mL, respectively. The combination effects of CT with antibiotics were synergistic (FIC index < 0.5) against tested oral bacteria except additive, Streptococcus sobrinus, S. criceti, and Actinobacillus actinomycetemcomitans (FIC index < 0.75 - 1.0). The MBCs were shown reducing ≥4 - 8-fold, indicating a synergistic effect as defined by a FBCI of ≤0.5. Furthermore, a time-kill study showed that the growth of the tested bacteria was completely attenuated after 3 - 6 h of treatment with the 1/2 MIC of CT, regardless of whether it was administered alone or with ampicillin or gentamicin. The results suggest that CT could be employed as a natural antibacterial agent against cariogenic and periodontopathogenic bac- teria.展开更多
文摘Objective:To investigate the inhibitory effect of curcumin on influenza virus HIN1 and H3N2 in vitro, Methods:The directly killing role of cureumin extract in vitro to influenza virus type A subtype H1N1 and H3N2 was evaluated by the canine kidney cells (MDCK), Results:The largest non toxic concentration of curcumin extract was 12, 5g/L and the effective inhibitory concentration to H1N1 and H3N2 was 6, 25G/1 AND 1,56g/L respectively, Conclusion: Curcumin extract have directly killing effect on H1N1 and H3N2 infections.
基金support of"Cooperative Research Program for Agriculture Science&Technology Development(Project No.PJ01283407)"Rural Development Administration,Republic of Koreasupported by Post-Doctoral Fellowship Program funded by the Ministry of Education of the Republic of Korea through the Chungbuk National University in 2019。
文摘The objective of this study is to investigate the immune-enhancing ability of viable and heat-killed Weissella cibaria JW15(JW15)isolated from Kimchi in RAW 264.7 macrophages.The immune effects were evaluated by measuring the production of NO,cytokines,inflammatory enzyme,and activation of NF-κB.Viable JW15 executed higher activity on stimulating the release of TNF-αas well as activating NF-κB compared to that of heatkilled JW15.Additionally,viable and heat-killed JW15 significantly increased the production of NO,IL-6 and TNF-αmore than that of Lactobacillus rhamnosus GG(LGG).Furthermore,viable JW15 induced higher production of i NOS compared with that of viable LGG.Collectively,our finding indicates that viable JW15 had similar,if not more,immune-enhancing activities as heat-killed JW15.In addition,viable JW15 had higher immune-enhancing activity than commercial strain LGG.Therefore,viable JW15 has the potential to be used as a functional food to improve the host immune response.
文摘Cryptotanshinone (CT), a major tanshinone of medicinal plant Salvia miltiorrhiza Bunge, demonstrated effective in vitro antibacterial activity against all oral bacteria tested in this experiment. The antibacterial activities of CT against oral bacteria were assessed using the checkerboard and time-kill methods to evaluate the synergistic effects of treatment with ampicillin or gentamicin. The CT was determined against oral pathogenic bacteria with MIC and MBC values ranging from 0.5 to 16 and 1 to 64 μg/mL;for am- picillin from 0.0313 to 16 and 0.125 to 32 μg/mL;for gentamicin from 2 to 256 and 4 to 512 μg/mL respectively. The range of MIC50 and MIC90 were 0.0625 - 8 μg/mL and 1 - 64 μg/mL, respectively. The combination effects of CT with antibiotics were synergistic (FIC index < 0.5) against tested oral bacteria except additive, Streptococcus sobrinus, S. criceti, and Actinobacillus actinomycetemcomitans (FIC index < 0.75 - 1.0). The MBCs were shown reducing ≥4 - 8-fold, indicating a synergistic effect as defined by a FBCI of ≤0.5. Furthermore, a time-kill study showed that the growth of the tested bacteria was completely attenuated after 3 - 6 h of treatment with the 1/2 MIC of CT, regardless of whether it was administered alone or with ampicillin or gentamicin. The results suggest that CT could be employed as a natural antibacterial agent against cariogenic and periodontopathogenic bac- teria.