The damage effects of fluid-filled submunition payload impacted by the kinetic kill vehicle(KKV)are investigated by simulations and ground-based experiments.Numerical simulations showed that the damage level and numbe...The damage effects of fluid-filled submunition payload impacted by the kinetic kill vehicle(KKV)are investigated by simulations and ground-based experiments.Numerical simulations showed that the damage level and number of submunitions were significantly influenced by the diameter of the KKV compared with its length.Based on that,a high velocity penetrator formed by shaped charge explosion was used to simulate the direct hit experiment of a KKV impacting submunition payload.Experimental results demonstrated that the damage modes of submunitions mainly included the slight damage,perforation and total smash,showing a good agreement with the simulations.To understand the multiple damage modes of submunitions,the damage behavior of the submunitions in direct hit process were analyzed based on the AUTODYN-3D code.Numerical results presented that increased KKV diameter can increase the crater diameter and expand the damage volume,which will achieve a higher direct hit lethality.Further analysis indicated that there were other mechanical behaviors can enhance the damage to submunitions not lying in the KKV flight path,such as secondary debris kill,neighboring submunitions collision with each other,and high-speed fluid injection effect.展开更多
The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guid...The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guidance sensors (both radar and infrared) are simulated. 3D model using MATLAB is developed for a multistage target with ascent phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The radar cross section (RCS) and infrared radiation (IR) of the target structure is estimated as a function of the flight profile. The Kill Vehicle (KV) design is examined as a function of the KV mass, acceleration capability, aimpoint offset and impact energy to destroy the target. The aim of the CDA is to: detect the launch of a threat ballistic missile, determine whether the detected object is a threat,define the characteristics of the threat ballistic missile, develop a firing solution to negate the threat ballistic missile, engage the threat ballistic missile, and assess the effectiveness for ballistic missile intercept. The architecture is modeled in Matlab.展开更多
基金supported by the National Natural Science Foundation of China (No. 12002046)supported by the State Key Laboratory of Explosion Science and Technology of China
文摘The damage effects of fluid-filled submunition payload impacted by the kinetic kill vehicle(KKV)are investigated by simulations and ground-based experiments.Numerical simulations showed that the damage level and number of submunitions were significantly influenced by the diameter of the KKV compared with its length.Based on that,a high velocity penetrator formed by shaped charge explosion was used to simulate the direct hit experiment of a KKV impacting submunition payload.Experimental results demonstrated that the damage modes of submunitions mainly included the slight damage,perforation and total smash,showing a good agreement with the simulations.To understand the multiple damage modes of submunitions,the damage behavior of the submunitions in direct hit process were analyzed based on the AUTODYN-3D code.Numerical results presented that increased KKV diameter can increase the crater diameter and expand the damage volume,which will achieve a higher direct hit lethality.Further analysis indicated that there were other mechanical behaviors can enhance the damage to submunitions not lying in the KKV flight path,such as secondary debris kill,neighboring submunitions collision with each other,and high-speed fluid injection effect.
文摘The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guidance sensors (both radar and infrared) are simulated. 3D model using MATLAB is developed for a multistage target with ascent phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The radar cross section (RCS) and infrared radiation (IR) of the target structure is estimated as a function of the flight profile. The Kill Vehicle (KV) design is examined as a function of the KV mass, acceleration capability, aimpoint offset and impact energy to destroy the target. The aim of the CDA is to: detect the launch of a threat ballistic missile, determine whether the detected object is a threat,define the characteristics of the threat ballistic missile, develop a firing solution to negate the threat ballistic missile, engage the threat ballistic missile, and assess the effectiveness for ballistic missile intercept. The architecture is modeled in Matlab.