The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progr...BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The asse...Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.展开更多
In this editorial,we comment on the article(World J Gastrointest Oncol 2024;16:1236-1247),which is a retrospective study of transarterial chemoembolization(TACE)combined with multi-targeted tyrosine kinase inhibitor(T...In this editorial,we comment on the article(World J Gastrointest Oncol 2024;16:1236-1247),which is a retrospective study of transarterial chemoembolization(TACE)combined with multi-targeted tyrosine kinase inhibitor(TKI)and programmed cell death protein-1(PD-1)inhibitor for the treatment of unresectable hepatocellular carcinoma(HCC).Herein,we focus specifically on the mechanisms of this triple therapy,administration sequence and selection of each medication,and implications for future clinical trials.Based on the interaction mechanisms between medications,the triple therapy of TACE+TKI+PD-1 is proposed to complement the deficiency of each monotherapy,and achieve synergistic antitumor effects.Although this triple therapy has been evaluated by several retrospective trials,it is still controversial whether the triple therapy achieves better clinical benefits,due to the flawed study design and heterogeneity in medications.In addition,the administration sequence,which may greatly affect the clinical benefit,needs to be fully considered at clinical decision-making for obtaining better prognosis.We hope that this editorial could contribute to the design and optimization of future trials.展开更多
BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung can...BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung cancer(NSCLC).CASE SUMMARY A 67-year-old female patient in advanced lung adenocarcinoma suffered from drug resistance after EGFR-TKIs treatment.Secondary pathological tissue biopsy confirmed squamous cell carcinoma(SCC)transformation.Patients inevitably encountered drug resistance issues after receiving EGFR-TKIs treatment for a certain period of time,while EGFR-TKIs can significantly improve the survival of patients with EGFR-sensitive mutations in NSCLC.Notably,EGFR-TKIs resistance includes primary and acquired.Pathological transformation is one of the mechanisms of acquired resistance in EGFR-TKIs,with SCC transformation being relatively rare.Our results provide more detailed results of the patient’s diagnosis and treatment process on SCC transformation after EGFR-TKIs treatment for lung adenocarcinoma.CONCLUSION Squamous cell carcinoma transformation is one of the acquired resistance mechanisms of EGFR-TKIs in advanced lung adenocarcinoma with EGFR mutations.展开更多
Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in imm...Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in immune responses against a variety of pathogens,including fungi,bacteria,and viruses.However,research on the specific response mechanisms and the spectrum of different kinase activities against various pathogens remains insufficient.This review provides an in-depth and comprehensive overview of the types and functions of RLKs and RLCKs involved in disease resistance,emphasizing the central role of certain RLKs and RLCKs in the plant immune system.These kinases can recognize specific molecular patterns of pathogens and rapidly initiate an immune response in rice.Furthermore,the activity and functional regulation of these key kinases are tightly controlled by various post-translational modifications,such as phosphorylation and ubiquitination.This meticulous regulation ensures that the rice immune system's response is both precise and timely,effectively balancing the intensity of the immune response and preventing potential issues caused by either hyperactivity or insufficiency.By synthesizing current research findings,this review not only broadens our understanding of the role of RLKs and RLCKs in plant immunity but also provides new perspectives and strategies for future research on disease resistance breeding in rice.Future studies are expected to delve deeper into the signaling networks and regulatory mechanisms of these kinases,exploring their potential in agricultural production to develop rice varieties with enhanced disease resistance.展开更多
Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally.Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molec...Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally.Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics,the management of gastric cancer calls for better-defined,biomarker-guided,molecular-based treatment strategies.MET is a receptor tyrosine kinase mediating important physiologic processes,such as embryogenesis,tissue regeneration,and wound healing.However,mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types,including gastric cancer,and is associated with poor patient outcomes.As such,MET-targeting therapies are being actively developed and promising progress has been demonstrated,especially with MET tyrosine kinase inhibitors.This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib,tepotinib,capmatinib,and crizotinib.Building on current knowledge,this review further discusses existing challenges in MET alterations testing,possible resistance mechanisms to MET inhibitors,and future directions of MET-targeting therapies.展开更多
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize...SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.展开更多
Tiller number and grain size are important agronomic traits that determine grain yield in rice.Here,we demonstrate that DEFECTIVE TILLER GROWTH 1(DTG1),a member of the casein kinase 1 protein family,exerts a co-regula...Tiller number and grain size are important agronomic traits that determine grain yield in rice.Here,we demonstrate that DEFECTIVE TILLER GROWTH 1(DTG1),a member of the casein kinase 1 protein family,exerts a co-regulatory effect on tiller number and grain size.We identified a single amino acid substitution in DTG1(I357K)that caused a decrease in tiller number and an increase in grain size in NIL-dtg1.Genetic analyses revealed that DTG1 plays a pivotal role in regulation of tillering and grain size.The DTG1^(I357K) allelic variant exhibited robust functionality in suppressing tillering.We show that DTG1 is preferentially expressed in tiller buds and young panicles,and negatively regulates grain size by restricting cell proliferation in spikelet hulls.We further confirm that DTG1 functioned in grain size regulation by directly interacting with Grain Width 2(GW2),a critical grain size regulator in rice.The CRISPR/Cas9-mediated elimination of DTG1 significantly enhanced tiller number and grain size,thereby increasing rice grain yield under field conditions,thus highlighting potential value of DTG1 in rice breeding.展开更多
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors(smTKIs),significant impact has been made in cancer chemotherapeutics.However,some of these agents still encounter off-target toxicities and suboptim...Buoyed by the discovery of small-molecule tyrosine kinase inhibitors(smTKIs),significant impact has been made in cancer chemotherapeutics.However,some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties.Almost all of these molecules exhibit significant inter-and intra-patient variations in plasma concentration-time profiles.Thus,therapeutic drug monitoring,dose adjustments and precision medicine are being contemplated by clinicians.Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release,overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes.In this context,the present review comprehensively tabulates and critically analyzes all the relevant properties(T1/2,solubility,pKa,therapeutic index,IC50,metabolism etc.)of the approved smTKIs.A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs,with a focus on strategies to enhance their pharmacokinetic profile,tumor targeting ability,and therapeutic efficacy.Various nanocarrier platforms,have been discussed,highlighting their unique features and potential applications in cancer therapy.Nanoformulations have been shown to improve bioavailability and reduce dosing frequency for several smTKIs in animal models.It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future.The review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.展开更多
Recent advancements in the treatment landscape of ulcerative colitis(UC)have ushered in a new era of possibilities,particularly with the introduction of Janus kinase(JAK)-signal transducer and activator of transcripti...Recent advancements in the treatment landscape of ulcerative colitis(UC)have ushered in a new era of possibilities,particularly with the introduction of Janus kinase(JAK)-signal transducer and activator of transcription inhibitors.These novel agents offer a paradigm shift in UC management by targeting key signaling pathways involved in inflammatory processes.With approved JAK inhibitors(JAKis),such as tofacitinib,filgotinib,and upadacitinib,clinicians now have powerful tools to modulate immune responses and gene expression,potentially revolutionizing the treatment algorithm for UC.Clinical trials have demonstrated the efficacy of JAKis in inducing and maintaining remission,presenting viable options for patients who have failed conventional therapies.Real-world data support the use of JAKis not only as first-line treatments but also in subsequent lines of therapy,particularly in patients with aggressive disease phenotypes or refractory to biologic agents.The rapid onset of action and potency of JAKis have broadened the possibilities in the management strategies of UC,offering timely relief for patients with active disease and facilitating personalized treatment approaches.Despite safety concerns,including cardiovascular risks and infections,ongoing research and post-marketing surveillance will continue to refine our understanding of the risk-benefit profile of JAKis in UC management.展开更多
Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical int...Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical intervention,and chemotherapy.Unfortunately,the median survival rate remains dishearteningly low at 12–15 months.One of the major obstacles in treating glioblastoma is the recurrence of tumors,making chemotherapy the primary approach for secondary glioma patients.However,the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms.Consequently,considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs.To tackle glioma,numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEKERK-MPAK.By targeting specific signaling pathways,heterocyclic compounds have demonstrated efficacy in glioma therapeutics.Additionally,key kinases including phosphatidylinositol 3-kinase(PI3K),serine/threonine kinase,cytoplasmic tyrosine kinase(CTK),receptor tyrosine kinase(RTK)and lipid kinase(LK)have been considered for investigation.These pathways play crucial roles in drug effectiveness in glioma treatment.Heterocyclic compounds,encompassing pyrimidine,thiazole,quinazoline,imidazole,indole,acridone,triazine,and other derivatives,have shown promising results in targeting these pathways.As part of this review,we propose exploring novel structures with low toxicity and high potency for glioma treatment.The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier.By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics,we can maximize their therapeutic value and minimize adverse effects.Considering the complex nature of glioblastoma,these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.展开更多
Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA s...Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.展开更多
Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproduct...Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.展开更多
Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in th...Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.展开更多
BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
In this editorial,we offer a summary of the risk associated with hepatitis B reactivation(HBVr)in the setting of both solid and hematologic malignancies treated with Bruton tyrosine kinase(BTK)inhibitors,with insights...In this editorial,we offer a summary of the risk associated with hepatitis B reactivation(HBVr)in the setting of both solid and hematologic malignancies treated with Bruton tyrosine kinase(BTK)inhibitors,with insights derived from current studies.Furthermore,we emphasize the critical need for a framework regarding robust risk evaluation in patients undergoing such treatments.This framework is essential for identifying those at increased risk of HBVr,enabling healthcare providers to implement proactive measures to prevent reactivation and ensure the safe administration of BTK inhibitor therapy.展开更多
Objective:The purpose of the study was to identify the best sequence of therapy beginning with a tyrosine kinase inhibitor(TKI)as the first-line therapy for patients with metastatic renal cell carcinoma(mRCC)in terms ...Objective:The purpose of the study was to identify the best sequence of therapy beginning with a tyrosine kinase inhibitor(TKI)as the first-line therapy for patients with metastatic renal cell carcinoma(mRCC)in terms of overall survival(OS),progression-free survival(PFS),and rates of discontinuation and adverse effects during the treatment period.Methods:This is a retrospective,nationwide multicenter study of patients with mRCC after diagnosis at 10 different tertiary medical centers in Korea from January 1992 to December 2017.We focused on patients at either“favorable”or“intermediate”risk according to the International mRCC Database Consortium criteria,and they were followed up(median 335 days).Finally,a total of 1409 patients were selected as the study population.We generated a Cox proportional hazard model adjusted for covariates,and the different therapy schemes were statistically tested in terms of OS as well as PFS.In addition,frequencies of discontinuation and adverse events were compared among the therapy schemes.Results:Of the primary patterns of treatment sequences(24 sequences),“sunitinib epazopanib”and“sunitinibeeverolimuseimmunotherapy”showed the most beneficial results in both OS and PFS with significantly lower hazards than“sunitinib”,which is the most commonly treated agent in Korea.Considering that the“TKIeTKI”structure showed relatively higher discontinuation rates with higher adverse effects,the overall beneficial sequence would be“sunitinibeeverolimuseimmunotherapy”.Conclusion:Among several sequential therapy starting with TKIs,“sunitinibeeverolimuse immunotherapy”was found to be the best scheme for mRCC patients with“favorable”or“intermediate”risks.展开更多
BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai...BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.展开更多
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金Supported by the Fundamental Research Program of Shanxi Province,No.202203021222418Research Program of Shanxi Provincial Health Commission,No.2023061+2 种基金Fundamental Research Cooperation Program of Beijing-Tianjin-Hebei Region of Natural Science Foundation of Tianjin,No.22JCZXJC00140Tianjin Major Science and Technology Project,No.21ZXJBSY00110Tianjin Health and Science and Technology Project,No.TJWJ2024ZK001.
文摘BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
文摘Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.
基金The National Natural Science Foundation of China,No.82104525The Natural Science Foundation of the Jiangsu Higher Education Institutions of China,No.21KJB360009.
文摘In this editorial,we comment on the article(World J Gastrointest Oncol 2024;16:1236-1247),which is a retrospective study of transarterial chemoembolization(TACE)combined with multi-targeted tyrosine kinase inhibitor(TKI)and programmed cell death protein-1(PD-1)inhibitor for the treatment of unresectable hepatocellular carcinoma(HCC).Herein,we focus specifically on the mechanisms of this triple therapy,administration sequence and selection of each medication,and implications for future clinical trials.Based on the interaction mechanisms between medications,the triple therapy of TACE+TKI+PD-1 is proposed to complement the deficiency of each monotherapy,and achieve synergistic antitumor effects.Although this triple therapy has been evaluated by several retrospective trials,it is still controversial whether the triple therapy achieves better clinical benefits,due to the flawed study design and heterogeneity in medications.In addition,the administration sequence,which may greatly affect the clinical benefit,needs to be fully considered at clinical decision-making for obtaining better prognosis.We hope that this editorial could contribute to the design and optimization of future trials.
文摘BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung cancer(NSCLC).CASE SUMMARY A 67-year-old female patient in advanced lung adenocarcinoma suffered from drug resistance after EGFR-TKIs treatment.Secondary pathological tissue biopsy confirmed squamous cell carcinoma(SCC)transformation.Patients inevitably encountered drug resistance issues after receiving EGFR-TKIs treatment for a certain period of time,while EGFR-TKIs can significantly improve the survival of patients with EGFR-sensitive mutations in NSCLC.Notably,EGFR-TKIs resistance includes primary and acquired.Pathological transformation is one of the mechanisms of acquired resistance in EGFR-TKIs,with SCC transformation being relatively rare.Our results provide more detailed results of the patient’s diagnosis and treatment process on SCC transformation after EGFR-TKIs treatment for lung adenocarcinoma.CONCLUSION Squamous cell carcinoma transformation is one of the acquired resistance mechanisms of EGFR-TKIs in advanced lung adenocarcinoma with EGFR mutations.
基金supported by the National Natural Science Foundation of China (Grant No.U2005211)the Fuzhou General Teaching Hospital (the 900th Hospital)Key Project,China (Grant No.2022ZD01)the Fujian Clinical Research Center for Aptamer-based Precision Testing,China (Grant No.2021Y2017)。
文摘Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in immune responses against a variety of pathogens,including fungi,bacteria,and viruses.However,research on the specific response mechanisms and the spectrum of different kinase activities against various pathogens remains insufficient.This review provides an in-depth and comprehensive overview of the types and functions of RLKs and RLCKs involved in disease resistance,emphasizing the central role of certain RLKs and RLCKs in the plant immune system.These kinases can recognize specific molecular patterns of pathogens and rapidly initiate an immune response in rice.Furthermore,the activity and functional regulation of these key kinases are tightly controlled by various post-translational modifications,such as phosphorylation and ubiquitination.This meticulous regulation ensures that the rice immune system's response is both precise and timely,effectively balancing the intensity of the immune response and preventing potential issues caused by either hyperactivity or insufficiency.By synthesizing current research findings,this review not only broadens our understanding of the role of RLKs and RLCKs in plant immunity but also provides new perspectives and strategies for future research on disease resistance breeding in rice.Future studies are expected to delve deeper into the signaling networks and regulatory mechanisms of these kinases,exploring their potential in agricultural production to develop rice varieties with enhanced disease resistance.
基金supported by the National Natural Science Foundation of China(Grant No.81602057)the Beijing Natural Science Foundation(Grant No.Z210015)。
文摘Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally.Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics,the management of gastric cancer calls for better-defined,biomarker-guided,molecular-based treatment strategies.MET is a receptor tyrosine kinase mediating important physiologic processes,such as embryogenesis,tissue regeneration,and wound healing.However,mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types,including gastric cancer,and is associated with poor patient outcomes.As such,MET-targeting therapies are being actively developed and promising progress has been demonstrated,especially with MET tyrosine kinase inhibitors.This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib,tepotinib,capmatinib,and crizotinib.Building on current knowledge,this review further discusses existing challenges in MET alterations testing,possible resistance mechanisms to MET inhibitors,and future directions of MET-targeting therapies.
基金supported by National Key Research and Development Program of China(2022YFD1200202)State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-7)Graduate Student Innovation Ability Training Funding Project of Hebei Province(CXZZBS2023073)。
文摘SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.
基金supported by the Sichuan Science and Technology Support Project (2022ZDZX0012,2021YFYZ0016,2023YFN0007,2021YFYZ0027)the National Natural Science Foundation of China (32171966,U23A20180).
文摘Tiller number and grain size are important agronomic traits that determine grain yield in rice.Here,we demonstrate that DEFECTIVE TILLER GROWTH 1(DTG1),a member of the casein kinase 1 protein family,exerts a co-regulatory effect on tiller number and grain size.We identified a single amino acid substitution in DTG1(I357K)that caused a decrease in tiller number and an increase in grain size in NIL-dtg1.Genetic analyses revealed that DTG1 plays a pivotal role in regulation of tillering and grain size.The DTG1^(I357K) allelic variant exhibited robust functionality in suppressing tillering.We show that DTG1 is preferentially expressed in tiller buds and young panicles,and negatively regulates grain size by restricting cell proliferation in spikelet hulls.We further confirm that DTG1 functioned in grain size regulation by directly interacting with Grain Width 2(GW2),a critical grain size regulator in rice.The CRISPR/Cas9-mediated elimination of DTG1 significantly enhanced tiller number and grain size,thereby increasing rice grain yield under field conditions,thus highlighting potential value of DTG1 in rice breeding.
文摘Buoyed by the discovery of small-molecule tyrosine kinase inhibitors(smTKIs),significant impact has been made in cancer chemotherapeutics.However,some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties.Almost all of these molecules exhibit significant inter-and intra-patient variations in plasma concentration-time profiles.Thus,therapeutic drug monitoring,dose adjustments and precision medicine are being contemplated by clinicians.Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release,overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes.In this context,the present review comprehensively tabulates and critically analyzes all the relevant properties(T1/2,solubility,pKa,therapeutic index,IC50,metabolism etc.)of the approved smTKIs.A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs,with a focus on strategies to enhance their pharmacokinetic profile,tumor targeting ability,and therapeutic efficacy.Various nanocarrier platforms,have been discussed,highlighting their unique features and potential applications in cancer therapy.Nanoformulations have been shown to improve bioavailability and reduce dosing frequency for several smTKIs in animal models.It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future.The review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
文摘Recent advancements in the treatment landscape of ulcerative colitis(UC)have ushered in a new era of possibilities,particularly with the introduction of Janus kinase(JAK)-signal transducer and activator of transcription inhibitors.These novel agents offer a paradigm shift in UC management by targeting key signaling pathways involved in inflammatory processes.With approved JAK inhibitors(JAKis),such as tofacitinib,filgotinib,and upadacitinib,clinicians now have powerful tools to modulate immune responses and gene expression,potentially revolutionizing the treatment algorithm for UC.Clinical trials have demonstrated the efficacy of JAKis in inducing and maintaining remission,presenting viable options for patients who have failed conventional therapies.Real-world data support the use of JAKis not only as first-line treatments but also in subsequent lines of therapy,particularly in patients with aggressive disease phenotypes or refractory to biologic agents.The rapid onset of action and potency of JAKis have broadened the possibilities in the management strategies of UC,offering timely relief for patients with active disease and facilitating personalized treatment approaches.Despite safety concerns,including cardiovascular risks and infections,ongoing research and post-marketing surveillance will continue to refine our understanding of the risk-benefit profile of JAKis in UC management.
基金The authors are thankful to Dr.Mayur Yergeri and Science and Engineering Research Board(SERB),Government of India,New Delhi,(CRG/2019/001452).
文摘Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical intervention,and chemotherapy.Unfortunately,the median survival rate remains dishearteningly low at 12–15 months.One of the major obstacles in treating glioblastoma is the recurrence of tumors,making chemotherapy the primary approach for secondary glioma patients.However,the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms.Consequently,considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs.To tackle glioma,numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEKERK-MPAK.By targeting specific signaling pathways,heterocyclic compounds have demonstrated efficacy in glioma therapeutics.Additionally,key kinases including phosphatidylinositol 3-kinase(PI3K),serine/threonine kinase,cytoplasmic tyrosine kinase(CTK),receptor tyrosine kinase(RTK)and lipid kinase(LK)have been considered for investigation.These pathways play crucial roles in drug effectiveness in glioma treatment.Heterocyclic compounds,encompassing pyrimidine,thiazole,quinazoline,imidazole,indole,acridone,triazine,and other derivatives,have shown promising results in targeting these pathways.As part of this review,we propose exploring novel structures with low toxicity and high potency for glioma treatment.The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier.By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics,we can maximize their therapeutic value and minimize adverse effects.Considering the complex nature of glioblastoma,these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
基金supported by the BK21 FOUR funded by the Ministry of Education,Republic of Korea,the National Research Foundation of Korea(NRF-2022R1F1A1066642,RS-2023-00272063)grant funded by the Korean government(MSIT),and POSTECH Basic Science Research Institute Grant(NRF-2021R1A6A1A10042944).Research was also supported by funds donated by Dr.Jae Kyu Lee and Mr.Jason Gim.Following are results of a study on the“Leaders in INdustry-University Cooperation 3.0”Project,supported by the Ministry of Education and National Research Foundation of Korea.
文摘Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.82001539 to Leilei Gao)the Zhejiang Province Health Innovation Talent Project(Grant No.2021RC001 to Zhen Jin)+1 种基金the General Program of the National Natural Science Foundation of China(Grant No.31671561 to Dong Zhang)the Regional Program of National Natural Science Foundation of China(Grant No.82260126 to Xiaocong Liu).
文摘Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
基金National Institutes of Health(NIH):National Heart,Lung,and Blood Institute(NHLBI:R01-HL164772,R01-HL159062,R01-HL146691,T32-HL144456)National Institute of Diabetes and Digestive and Kidney Diseases(NIDDK:R01-DK123259,R01-DK033823)+2 种基金National Center for Advancing Translational Sciences(NCATS:UL1-TR002556-06,UM1-TR004400)(to Gaetano Santulli)Diabetes Action Research and Education Foundation(to Gaetano Santulli)Monique Weill-Caulier and Irma T.Hirschl Trusts(to Gaetano Santulli).
文摘Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
文摘In this editorial,we offer a summary of the risk associated with hepatitis B reactivation(HBVr)in the setting of both solid and hematologic malignancies treated with Bruton tyrosine kinase(BTK)inhibitors,with insights derived from current studies.Furthermore,we emphasize the critical need for a framework regarding robust risk evaluation in patients undergoing such treatments.This framework is essential for identifying those at increased risk of HBVr,enabling healthcare providers to implement proactive measures to prevent reactivation and ensure the safe administration of BTK inhibitor therapy.
文摘Objective:The purpose of the study was to identify the best sequence of therapy beginning with a tyrosine kinase inhibitor(TKI)as the first-line therapy for patients with metastatic renal cell carcinoma(mRCC)in terms of overall survival(OS),progression-free survival(PFS),and rates of discontinuation and adverse effects during the treatment period.Methods:This is a retrospective,nationwide multicenter study of patients with mRCC after diagnosis at 10 different tertiary medical centers in Korea from January 1992 to December 2017.We focused on patients at either“favorable”or“intermediate”risk according to the International mRCC Database Consortium criteria,and they were followed up(median 335 days).Finally,a total of 1409 patients were selected as the study population.We generated a Cox proportional hazard model adjusted for covariates,and the different therapy schemes were statistically tested in terms of OS as well as PFS.In addition,frequencies of discontinuation and adverse events were compared among the therapy schemes.Results:Of the primary patterns of treatment sequences(24 sequences),“sunitinib epazopanib”and“sunitinibeeverolimuseimmunotherapy”showed the most beneficial results in both OS and PFS with significantly lower hazards than“sunitinib”,which is the most commonly treated agent in Korea.Considering that the“TKIeTKI”structure showed relatively higher discontinuation rates with higher adverse effects,the overall beneficial sequence would be“sunitinibeeverolimuseimmunotherapy”.Conclusion:Among several sequential therapy starting with TKIs,“sunitinibeeverolimuse immunotherapy”was found to be the best scheme for mRCC patients with“favorable”or“intermediate”risks.
基金Liaoning Provincial Science and Technology Department Project,No.2023JH2/101700149Open Fund Project of Liaoning University of Traditional Chinese Medicine,No.zyzx2205.
文摘BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.