With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ...With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.展开更多
This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control law...This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method.展开更多
From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relation...From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relationship among the kinetic control parameters in the snake like movement using Lie group and Lie algebra of the principle fiber bundle and provide some theoretical control methods to realize the snake like locomotion.展开更多
This paper is devoted to discuss the motion of controllable constrained Birkhoffian system along with its absence of constraints.The first step is to establish the autonomous and non-autonomous differential equations ...This paper is devoted to discuss the motion of controllable constrained Birkhoffian system along with its absence of constraints.The first step is to establish the autonomous and non-autonomous differential equations of motion of the system,based on Pfaff-Birkhoff principle.Secondly,the existence of constraint multipliers are exhaustively discussed.Thirdly,the definition of one kind motion of the system,called free motion,is given,which is described and analyzed by the absence of constraints that are determined by constraint multipliers.Lemma 2 illustrates that one system can realize its free motion by selecting proper control parameters.In particular,theorem 2 provides that one system can naturally realize free motion when we consider the integral of the unconstrained Birkhoffian system as the constraints of constrained Birkhoffian system.Finally,the results obtained are illustrated by several examples.展开更多
The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset fron...The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset frontal vehicle-to-vehicle collision. A unique 6-degree-of- freedom (6-DOF) vehicle dynamics/crash mathematical model and a simplified lumped mass occupant model are developed. The first model is used to define the vehicle body crash parameters and it integrates a vehicle dynamics model with a vehicle front-end structure model. The second model aims to predict the effect of VDCS on the kinematics of the occupant. It is shown from the numerical simulations that the vehicle dynamics/crash response and occupant behaviour can be captured and analysed quickly and accurately. Yurthermore, it is shown that the VDCS can affect the crash characteristics positively and the occupant behaviour is improved.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(62206109)the Fundamental Research Funds for the Central Universities(21620346)。
文摘With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations.
文摘This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method.
文摘From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relationship among the kinetic control parameters in the snake like movement using Lie group and Lie algebra of the principle fiber bundle and provide some theoretical control methods to realize the snake like locomotion.
基金supported by the National Natural Science Foundation of China(Grants 11272050,11572034,11872030 and 11972177).
文摘This paper is devoted to discuss the motion of controllable constrained Birkhoffian system along with its absence of constraints.The first step is to establish the autonomous and non-autonomous differential equations of motion of the system,based on Pfaff-Birkhoff principle.Secondly,the existence of constraint multipliers are exhaustively discussed.Thirdly,the definition of one kind motion of the system,called free motion,is given,which is described and analyzed by the absence of constraints that are determined by constraint multipliers.Lemma 2 illustrates that one system can realize its free motion by selecting proper control parameters.In particular,theorem 2 provides that one system can naturally realize free motion when we consider the integral of the unconstrained Birkhoffian system as the constraints of constrained Birkhoffian system.Finally,the results obtained are illustrated by several examples.
基金the Egyptian government and the Faculty of Engineering,Ain Shams University for supporting this research
文摘The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset frontal vehicle-to-vehicle collision. A unique 6-degree-of- freedom (6-DOF) vehicle dynamics/crash mathematical model and a simplified lumped mass occupant model are developed. The first model is used to define the vehicle body crash parameters and it integrates a vehicle dynamics model with a vehicle front-end structure model. The second model aims to predict the effect of VDCS on the kinematics of the occupant. It is shown from the numerical simulations that the vehicle dynamics/crash response and occupant behaviour can be captured and analysed quickly and accurately. Yurthermore, it is shown that the VDCS can affect the crash characteristics positively and the occupant behaviour is improved.