期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Smart Material Based Complex Mode Active Control of Flexible Manipulators with Kinematic Redundancy 被引量:1
1
作者 宋轶民 张策 余跃庆 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第4期240-245,共6页
An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manip... An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly. 展开更多
关键词 flexible manipulator kinematic redundancy active control smart material complex mode
下载PDF
Kinematics Analysis and Singularity Avoidance of a Parallel Mechanism with Kinematic Redundancy
2
作者 Chaoyu Shen Haibo Qu +1 位作者 Sheng Guo Xiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期244-261,共18页
The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3... The kinematic redundancy is considered as a way to improve the performance of the parallel mechanism.In this paper,the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy(3-DOF PM-KR)and the influence of redundant parts on the PM-KR are analyzed.Firstly,the kinematics model of the PM-KR is established.The inverse solutions,the Jacobian matrix,and the workspace of the PM-KR are solved.Secondly,the influence of redundancy on the PM-KR is analyzed.Since there exists kinematic redundancy,the PM-KR possesses fault-tolerant performance.By locking one actuating joint or two actuating joints simultaneously,the fault-tolerant workspace is obtained.When the position of the redundant part is changed,the workspace and singularity will be changed.The results show that kinematic redundancy can be used to avoid singularity.Finally,the simulations are performed to prove the theoretical analysis. 展开更多
关键词 Parallel mechanism kinematic redundancy SINGULARITY Simulation analysis
下载PDF
Homing Strategy for a 4RRR Parallel Kinematic Machine 被引量:2
3
作者 WANG Liping LIU Dawei LI Tiemin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期399-405,共7页
Returning home is the most important process of a parallel kinematic machine (PKM) with incremental encoders.Currently,most corresponding articles focus on the accuracy of homing process,and there lacks the investig... Returning home is the most important process of a parallel kinematic machine (PKM) with incremental encoders.Currently,most corresponding articles focus on the accuracy of homing process,and there lacks the investigation of the operation's safety.For a 4RRR PKM,all servoaxes would be independently driven to their zero positions at the same time based on the traditional homing mode,and that can bring serious interfere of the kinematic chains.This paper systemically investigates this 4RRR PKM's safety of homing process.A homing strategy usually contains three parts which are the home switches' locations,the platform's initial moving space,and each links' homing direction,and all of them can influence the safety of homing operation.For the purpose of evaluating and describing the safety of the homing strategy,some important parameters are introduced as follows:Safely homing ratio (SHR) is used to evaluate the probability of a machine's successfully returning home from an initial moving space;Synchronal rotational angle (SRA) is the four links' largest synchronal rotational angle with given directions from a given pose.Whether a machine can safely return home from a given pose can be judged by comparing the SRA with all four home switches' mounting angles.By meshing the initial moving space and checking the safeties of returning home from all the initial poses on the nodes,the SHR of this initial moving space can be calculate.For the sake of convenience,the platform's initial moving space should be as large as possible,and in this 4RRR PKM,a square zone in the center of the workspace with a giving initial rotation range is selected as the platform's initial moving space.The forward direction is selected as each link's homing direction according to custom,and the platform's initial rotational angle is selected as larger than 0° based on this 4RRR PKM's kinematic characteristics.The platform's initial moving space can be defined only by the side length of the initial moving square.By setting a probable searching step and calculating the SHR of the initial moving square,an optimal procedure of searching for the largest side length of the platform's initial moving square is proposed.The homing strategy proposed is based on a systemic research on the safety of homing process for PKM,and the two new indexes SHR and SRA can clearly describe the safety of homing operation.The homing operation based on this strategy is fast and safe,and the method can also be used in other PKMs with the situation of serious components' interference. 展开更多
关键词 homing strategy safely homing operation maximum safely homing space redundant parallel kinematic machine
下载PDF
Gait Planning for a Quadruped Robot with One Faulty Actuator 被引量:12
4
作者 CHEN Xianbao GAO Feng +1 位作者 QI Chenkun TIAN Xinghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期11-19,共9页
Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(D... Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments. 展开更多
关键词 quadruped robot fault-tolerant gait MOBILITY kinematic redundancy
下载PDF
Adaptive Control of Flexible Redundant Manipulators Using Neural Networks 被引量:2
5
作者 宋轶民 李建新 +1 位作者 王世宇 刘建平 《Transactions of Tianjin University》 EI CAS 2006年第6期429-433,共5页
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach... An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy. 展开更多
关键词 flexible manipulators kinematic redundancy active vibration control neural networks adaptive control
下载PDF
Structural Synthesis and Workspaces of Serial Robotic Chains with 7 Axes
6
《Journal of Mechanics Engineering and Automation》 2014年第1期35-39,共5页
Redundant serial robot kinematic chains with seven axes are an extension of classical 6-axis ones. The structural synthesis of these structures is useful to provide a working basis, including for the promotion of new ... Redundant serial robot kinematic chains with seven axes are an extension of classical 6-axis ones. The structural synthesis of these structures is useful to provide a working basis, including for the promotion of new structures with 7 axes, besides some already existing and applied structures. This paper summarizes kinematic chain structures using a combinatorial method by listing all possible variants of the structures with 7 axes, obtained by adding a rotational or translational coupling, in a parallel or perpendicular position, against the guiding structure with 6 axes consisting of two distinct modules: positioning module (3 axes) and orientation module (3 axes). Representation of proper workspaces can help the designer in choosing the structure with maximum functionality for a given application. 展开更多
关键词 ROBOT structural synthesis redundant kinematic chain workspace.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部