The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-...The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-pulse shock tube(SPST)is used to perform the pyrolysis experiments at reaction times varying from 1.65 to 1.74 ms.Major products are obtained and quantified using gas chromatography analysis.A flame ionization detector and a thermal conductivity detector are used for species identification and quantification.Kinetic modeling has been performed using several detailed and lumped chemical kinetic mechanisms.Differences in modeling results among the kinetic models are described.Reaction path analysis and sensitivity analysis are performed to determine the important reactions controlling fuel pyrolysis and their influence on the predicted concentrations of reactant and product species profiles.The present work provides new fundamental knowledge in understating pyrolysis characteristics of cyclohexane compounds and additional data set for detailed kinetic mechanism development.展开更多
The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distri...The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network.展开更多
It is commonly accepted that, on social networks, the opinion of the agents with a higher connectivity, i.e., a larger number of followers, results in more convincing than that of the agents with a lower number of fol...It is commonly accepted that, on social networks, the opinion of the agents with a higher connectivity, i.e., a larger number of followers, results in more convincing than that of the agents with a lower number of followers. By kinetic modeling approach, a kinetic model of opinion formation on social networks is derived, in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion exchange process is governed by a Sznajd type model with three opinions, ±1, 0, and the social network is represented statistically with connectivity denoting the number of contacts of a given individual. The asymptotic mean opinion of a social network is determined in terms of the initial opinion and the connectivity of the agents.展开更多
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomer...Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.展开更多
The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to descri...The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.展开更多
At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present un...At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.展开更多
Gamma-aminobutyric acid(GABA)is a natural non-protein functio nal amino acid,which has potential for fermentation industrial production by Lactobacillus brevis.This work investigated the batch fermentation process and...Gamma-aminobutyric acid(GABA)is a natural non-protein functio nal amino acid,which has potential for fermentation industrial production by Lactobacillus brevis.This work investigated the batch fermentation process and developed a kinetic model based on substrate restrictive model established by experimental data from L25(5~6)orthogonal experiments.In this study,the OD600 value of fermentation broth was fixed to constant after reaching its maximum because the microorganism death showed no effect on the enzyme activity of glutamate decarboxylase(GAD).As pH is one of the key parameters in fermentation process,a pH-dependent kinetic model based on radial basis function was developed to enhance the practicality of the model.Furthermore,as to decrease the deviations between the simulated curves and the experimental data,the rolling correction strategy with OD600 values that was measured in real-time was introduced into this work to modify the model.Finally,the accu racy of the rolling corrected and pH-dependent model was validated by good fitness between the simulated curves and data of the initial batch fermentation(pH 5.2).As a result,this pH-dependent kinetic model revealed that the optimal pH for biomass growth is 5.6-5.7 and for GABA production is about 5,respectively.Therefore,the developed model is practical and convenient for the instruction of GABA fermentation production,and it has instructive significance for the industrial scale.展开更多
A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5...A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.展开更多
This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial desig...This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.展开更多
The photocatalytic degradation of methyl orange (MO) in UV/Supported-TiO2 system was investigated and a kinetic model was presented. The experimental results show that the photocatalytic degradation rate is favored ...The photocatalytic degradation of methyl orange (MO) in UV/Supported-TiO2 system was investigated and a kinetic model was presented. The experimental results show that the photocatalytic degradation rate is favored by high concentration of dye in solution and is enhanced by the solution temperature. A simple kinetic model has been proposed which can describe the discoloration process in an adequate way. The calculated results obtained were in good agreement with experimental data. The model predicts the concentration of MO during the photocatalytic degradation process.展开更多
We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an ov...We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.展开更多
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,redu...A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.展开更多
A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by ...A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by means of a two-step procedure.In the first step,a synthetic mixture of molecules representing the feedstock is generated via a molecular reconstruction method,termed SR-REM molecular reconstruction.In the second step,a kinetic Monte Carlo method,termed stochastic simulation algorithm(SSA),is used to simulate the effect of the conversion reactions on the mixture of molecules.The resulting methodology is applied to the Athabasca vacuum residue hydrocracking.An adequate molecular representation of the vacuum residue is obtained using the SR-REM algorithm.The reaction simulations present a good agreement with the laboratory data for Athabasca vacuum residue conversion.In addition,the proposed methodology provides the molecular detail of the vacuum residue conversion throughout the reactions simulations.展开更多
Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophi...Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.展开更多
A complete mechanism of methane pyrolysis is proposed for chemical vapor infiltration of pyrocarbon with different textures, which contains a detailed homogeneous mechanism for gas reactions and a lumped heterogeneous...A complete mechanism of methane pyrolysis is proposed for chemical vapor infiltration of pyrocarbon with different textures, which contains a detailed homogeneous mechanism for gas reactions and a lumped heterogeneous mechanism for pyrocarbon deposition. This model is easily applied to simulate gas compositions and pyrocarbon deposition in a vertical hot-wall flow reactor in the temperature range of 1,323–1,398 K without any adjusting parameters and presents better results than previous mechanisms. Results have shown that the consumption of methane and the production of hydrogen are well enhanced due to pyrocarbon deposition. Pyrocarbon deposition prevents the continuously increasing of acetylene composition and leads to the reduction in the mole fraction of benzene at long residence times in the gas phase. The carbon growth with active sites on the surface is the controlling mechanism of pyrocarbon deposition. C1 species is the precursor of pyrocarbon deposition at 1,323 K,and the primary source over the whole temperature range. As temperature increases, gas phase becomes more mature and depositions from acetylene, benzene and polyaromatic hydrocarbons become more prevalent. A general pyrocarbon formation mechanism is derived with the specific precursors and illustrates that the maturation of gas compositions is beneficial to forming planar structures with hexagonal rings or pentagon-heptagon pairs, namely, high textured pyrocarbon. The results are in well agreement with experiments.展开更多
Modeling the kinetics of the preparing process is necessary to produce a product with the appropriate particle properties and minimum production cost.Owing to the lackness of crystal size distributor (CSD) informati...Modeling the kinetics of the preparing process is necessary to produce a product with the appropriate particle properties and minimum production cost.Owing to the lackness of crystal size distributor (CSD) information,however,solvent-mediated phase transformation encounters difficulty in modeling the kinetics as compared to solution crystallization.Consequently,a model was established by making the product CSD to move along by horizontal translation to obtain the CSDs of the stable phase in the process of transformation.Then the moment method was used to solve the popular balance equation,and the least square nonlinear regression method was applied to estimate the kinetics parameters.The model has been successfully used to simulate the transformation of CaSO4?2H2O to α-CaSO4?1/2H2O in an isothermal seeded batch crystallizer with different stirring speeds,and it is beneficial to producing high performance α-CaSO4?1/2H2O crystals which have the right particle characteristics.展开更多
Acidizing treatment in petroleum reservoirs is a short-term and viable strategy to preserve the productivity of a well.There is a major concern for the degradation of cement sheath integrity,leading to poor zonal isol...Acidizing treatment in petroleum reservoirs is a short-term and viable strategy to preserve the productivity of a well.There is a major concern for the degradation of cement sheath integrity,leading to poor zonal isolation and environmental issues.Therefore,it is essential to understand how the cement behaves when attacked by hydrochloric acid.In this study,a cement slurry by incorporation of the Henna extract,as an environmentally friendly cement additive,was synthesized as a potential solution to solve this problem.The characteristics of the treated cement slurry were compared with a reference slurry(w/c?0.44)which is composed of only cement and water.A kinetic study was carried out to evaluate the adsorption behavior of the cement slurries exposed to an acid solution with 0.1 M HCl in a range of 25 to 55C conditions.The features of the cement slurries were evaluated by multiple analytical techniques such as XRD,FTIR,TG,and DSC analysis.From the experimental data,it is concluded that the second-order Lagergren kinetic model revealed to be the best in describing kinetic isotherms taken,because the margin between experimental and calculated values was minor for this model.The results of the characterization and HCl interaction kinetic studies underlined the prominent protective role of Henna extract-modified cement slurry in the enhancement of the cement resistance against acid attack and utilization in environmentally favorable oil well acidizing treatments.展开更多
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c...Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.展开更多
This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical l...This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.展开更多
文摘The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-pulse shock tube(SPST)is used to perform the pyrolysis experiments at reaction times varying from 1.65 to 1.74 ms.Major products are obtained and quantified using gas chromatography analysis.A flame ionization detector and a thermal conductivity detector are used for species identification and quantification.Kinetic modeling has been performed using several detailed and lumped chemical kinetic mechanisms.Differences in modeling results among the kinetic models are described.Reaction path analysis and sensitivity analysis are performed to determine the important reactions controlling fuel pyrolysis and their influence on the predicted concentrations of reactant and product species profiles.The present work provides new fundamental knowledge in understating pyrolysis characteristics of cyclohexane compounds and additional data set for detailed kinetic mechanism development.
基金supported by the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education[grant number GCP20190204]Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology(Wuhan Institute of Technology)[grant number 40201005]+1 种基金Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education[grant number LKF201908]Graduate Innovative Fund of Wuhan Institute of Technology[grant number CX2021028].
文摘The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network.
文摘It is commonly accepted that, on social networks, the opinion of the agents with a higher connectivity, i.e., a larger number of followers, results in more convincing than that of the agents with a lower number of followers. By kinetic modeling approach, a kinetic model of opinion formation on social networks is derived, in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion exchange process is governed by a Sznajd type model with three opinions, ±1, 0, and the social network is represented statistically with connectivity denoting the number of contacts of a given individual. The asymptotic mean opinion of a social network is determined in terms of the initial opinion and the connectivity of the agents.
基金This work is supported by the National Natu- ral Science Foundation of China (No.51106146 and No.51036007), China Postdoctoral Science Foundation (No.20100480047 and No.201104326), Chinese Univer- sities Scientific Fund (No.WK2310000010), and Chinese Academy of Sciences.
文摘Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.
基金the fund of"National‘Twelfth Five-Year’Plan for Science&Technology Support"(No.2012BAE05B04)"Research on Hydrocracking Catalysts Grading Technology"undertaken by Fushun Research Institute of Petroleum and Petrochemicals(FRIPP)supported by SINOPEC(No.101102)
文摘The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.
基金supported by the CNPC Project(Grant No.06-01C-01-04)National Natural Science Foundation of China(Grant No.40603014).
文摘At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.
基金supported by the National Natural Science Foundation of China(21621004,22078239)the Beijing-Tianjin-Hebei Basic Research Cooperation Project(B2021210008)+1 种基金Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-KJGG-004)the Tianjin Development Program for Innovation and Entrepreneurship(2018)。
文摘Gamma-aminobutyric acid(GABA)is a natural non-protein functio nal amino acid,which has potential for fermentation industrial production by Lactobacillus brevis.This work investigated the batch fermentation process and developed a kinetic model based on substrate restrictive model established by experimental data from L25(5~6)orthogonal experiments.In this study,the OD600 value of fermentation broth was fixed to constant after reaching its maximum because the microorganism death showed no effect on the enzyme activity of glutamate decarboxylase(GAD).As pH is one of the key parameters in fermentation process,a pH-dependent kinetic model based on radial basis function was developed to enhance the practicality of the model.Furthermore,as to decrease the deviations between the simulated curves and the experimental data,the rolling correction strategy with OD600 values that was measured in real-time was introduced into this work to modify the model.Finally,the accu racy of the rolling corrected and pH-dependent model was validated by good fitness between the simulated curves and data of the initial batch fermentation(pH 5.2).As a result,this pH-dependent kinetic model revealed that the optimal pH for biomass growth is 5.6-5.7 and for GABA production is about 5,respectively.Therefore,the developed model is practical and convenient for the instruction of GABA fermentation production,and it has instructive significance for the industrial scale.
文摘A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.
基金the Tarbiat Modares University & Nuclear Science and Technology Research Institute for their financial support
文摘This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.
文摘The photocatalytic degradation of methyl orange (MO) in UV/Supported-TiO2 system was investigated and a kinetic model was presented. The experimental results show that the photocatalytic degradation rate is favored by high concentration of dye in solution and is enhanced by the solution temperature. A simple kinetic model has been proposed which can describe the discoloration process in an adequate way. The calculated results obtained were in good agreement with experimental data. The model predicts the concentration of MO during the photocatalytic degradation process.
文摘We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
文摘A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.
文摘A methodology for kinetic modeling of conversion processes is presented.The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the reactions of the process by means of a two-step procedure.In the first step,a synthetic mixture of molecules representing the feedstock is generated via a molecular reconstruction method,termed SR-REM molecular reconstruction.In the second step,a kinetic Monte Carlo method,termed stochastic simulation algorithm(SSA),is used to simulate the effect of the conversion reactions on the mixture of molecules.The resulting methodology is applied to the Athabasca vacuum residue hydrocracking.An adequate molecular representation of the vacuum residue is obtained using the SR-REM algorithm.The reaction simulations present a good agreement with the laboratory data for Athabasca vacuum residue conversion.In addition,the proposed methodology provides the molecular detail of the vacuum residue conversion throughout the reactions simulations.
基金supported by the National Natural Science Foundation of China (No.NSFC20976069)the Fundamental Research Funds for the Central Universities,China (No.JUSRP111A12)+1 种基金the Higher School Science and Technology Innovation Project of Cultivating the Capital Project,China (No.708048)the Selfdetermined Research Program of Jiangnan University (No.JUSRP11006)
文摘Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3.day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m^3·day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics,biogas compositions, and biogas- lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 〉 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time.
基金supported by the National Natural Science Foundation of China (51521061 and 51472203)the "111" Project (B08040)the Research Fund of State Key Laboratory of Solidification Processing (NWPU),China (142-TZ-2016)
文摘A complete mechanism of methane pyrolysis is proposed for chemical vapor infiltration of pyrocarbon with different textures, which contains a detailed homogeneous mechanism for gas reactions and a lumped heterogeneous mechanism for pyrocarbon deposition. This model is easily applied to simulate gas compositions and pyrocarbon deposition in a vertical hot-wall flow reactor in the temperature range of 1,323–1,398 K without any adjusting parameters and presents better results than previous mechanisms. Results have shown that the consumption of methane and the production of hydrogen are well enhanced due to pyrocarbon deposition. Pyrocarbon deposition prevents the continuously increasing of acetylene composition and leads to the reduction in the mole fraction of benzene at long residence times in the gas phase. The carbon growth with active sites on the surface is the controlling mechanism of pyrocarbon deposition. C1 species is the precursor of pyrocarbon deposition at 1,323 K,and the primary source over the whole temperature range. As temperature increases, gas phase becomes more mature and depositions from acetylene, benzene and polyaromatic hydrocarbons become more prevalent. A general pyrocarbon formation mechanism is derived with the specific precursors and illustrates that the maturation of gas compositions is beneficial to forming planar structures with hexagonal rings or pentagon-heptagon pairs, namely, high textured pyrocarbon. The results are in well agreement with experiments.
文摘Modeling the kinetics of the preparing process is necessary to produce a product with the appropriate particle properties and minimum production cost.Owing to the lackness of crystal size distributor (CSD) information,however,solvent-mediated phase transformation encounters difficulty in modeling the kinetics as compared to solution crystallization.Consequently,a model was established by making the product CSD to move along by horizontal translation to obtain the CSDs of the stable phase in the process of transformation.Then the moment method was used to solve the popular balance equation,and the least square nonlinear regression method was applied to estimate the kinetics parameters.The model has been successfully used to simulate the transformation of CaSO4?2H2O to α-CaSO4?1/2H2O in an isothermal seeded batch crystallizer with different stirring speeds,and it is beneficial to producing high performance α-CaSO4?1/2H2O crystals which have the right particle characteristics.
文摘Acidizing treatment in petroleum reservoirs is a short-term and viable strategy to preserve the productivity of a well.There is a major concern for the degradation of cement sheath integrity,leading to poor zonal isolation and environmental issues.Therefore,it is essential to understand how the cement behaves when attacked by hydrochloric acid.In this study,a cement slurry by incorporation of the Henna extract,as an environmentally friendly cement additive,was synthesized as a potential solution to solve this problem.The characteristics of the treated cement slurry were compared with a reference slurry(w/c?0.44)which is composed of only cement and water.A kinetic study was carried out to evaluate the adsorption behavior of the cement slurries exposed to an acid solution with 0.1 M HCl in a range of 25 to 55C conditions.The features of the cement slurries were evaluated by multiple analytical techniques such as XRD,FTIR,TG,and DSC analysis.From the experimental data,it is concluded that the second-order Lagergren kinetic model revealed to be the best in describing kinetic isotherms taken,because the margin between experimental and calculated values was minor for this model.The results of the characterization and HCl interaction kinetic studies underlined the prominent protective role of Henna extract-modified cement slurry in the enhancement of the cement resistance against acid attack and utilization in environmentally favorable oil well acidizing treatments.
基金financial support from the National Natural Science Foundation of China (21838004)Priority Academic Program Development of Jiangsu Higher Education Institutions (PPZY2015A044)Top-notch Academic Programs Project of Jiangsu Higher Education Institution (TAPP)。
文摘Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.
基金Supported by the National Basic Research Program (2010CB630902, 2004CB619202) the National Natural Science Foundation of China (31070034, 30800011, 31260396)+1 种基金 the Knowledge Innovation Program of CAS (2AKSCX2-YW-JS401) the Reward Fund for Young Scientists of Shandong Province (2007BS08002) of China
文摘This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.