Molecular chaperones are widely employed as additives in nature to trap proteins in the kinetic state,which inspire the development of kinetically trapped artificial supramolecular systems.Till now,such additive-contr...Molecular chaperones are widely employed as additives in nature to trap proteins in the kinetic state,which inspire the development of kinetically trapped artificial supramolecular systems.Till now,such additive-controlled approaches have enabled the stabilization of extended supramolecular structures in the kinetically trapped state,while discrete assemblies with sufficient kinetic persistence are scarce.In this study,a Pt(Ⅱ)-based discrete supramolecular system has been constructed by taking advantage of Cu+-bridged ions as chaperone-like additives.展开更多
Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although th...Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated.High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled.We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress(>30 pNnm)inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges.In addition,the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity.The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending.The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics.The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear.The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.展开更多
At present,the grape and cherry industries in Shandong are in the leading position in China and have driven the development of related high-end manufacturing industries such as wine,brandy,preserved fruit processing,f...At present,the grape and cherry industries in Shandong are in the leading position in China and have driven the development of related high-end manufacturing industries such as wine,brandy,preserved fruit processing,fruit juice processing and health products. Therefore,vigorously developing the grape and cherry industries in Shandong Province and carrying out development and innovation are important parts of Shandong Province in responding to the strategy of national new and old kinetic energy conversion. However,currently the germplasm resources preserved in the fruit tree resources banks in China are only 45% of those in the US and 27. 2% of those in the EU. Moreover,the development of fruit trees resources banks in Shandong is relatively backward in China,and there is still no banks related with grape and cherry germplasm resources in Shandong. Therefore,importance can be attached to the agriculture,forestry,and animal husbandry to build germplasm resources banks for grape and cherry industries in Shandong Province. Building the national-level grape and cherry germplasm resources bank in Shandong Province can also promote the utilization of wild and farm germplasm resources in the future; advance the research on the genes related to disease resistance,stress resistance and quality of grapes and cherries; push forward the construction and development of cherry and grape mutants banks. It is conducive to the research on the agronomic traits of grapes and cherries,and can provide the parents resources for planting innovation and improving the quality of grapes and cherries,as well as promote the development and application of molecular markers of grapes and cherries,including the identification of lines and crossbreeding. Thereby,it cannot only promote the industry development,but also achieve the development of cultivation,breeding and basic research in an all-round way and the development of " production,study and research" going side by side.展开更多
基金sup-ported by the National Natural Science Foundation of China(nos.21922110,21871245,21674106,and 21704075)the Fundamental Research Funds for the Central Univer-sities(no.WK3450000005)the CAS Youth Innova-tion Promotion Association(no.Y201986).
文摘Molecular chaperones are widely employed as additives in nature to trap proteins in the kinetic state,which inspire the development of kinetically trapped artificial supramolecular systems.Till now,such additive-controlled approaches have enabled the stabilization of extended supramolecular structures in the kinetically trapped state,while discrete assemblies with sufficient kinetic persistence are scarce.In this study,a Pt(Ⅱ)-based discrete supramolecular system has been constructed by taking advantage of Cu+-bridged ions as chaperone-like additives.
基金This work was supported in part by a grant from Russian Scientific Foundation(Project No.17-75-30064).
文摘Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated.High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled.We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress(>30 pNnm)inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges.In addition,the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity.The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending.The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics.The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear.The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.
基金supported by the Agricultural scientific and technological innovation project of Shandong Academy of Agricultural Sciences(CXGC2016D01)Agricultural scientific and technological innovation project of Shandong Academy of Agricultural Sciences-cultivating project for National Natural Science Foundation of China in 2018"identification and function research of Vitis vinifera and Vitis amurensis cold stress response-related micro RNAs"+2 种基金Major Agricultural Application Technology Innovation Project of Shandong Province"Research and Application of Precision Control of Maturation and Product Innovation of Featured Brewing Grape"Major Agricultural Application Technology Innovation Project of Shandong Province"Development of Landmark Wines and Integrated Application of Key Technologies in Shandong Province"Fruit innovation team of modern agricultural industry technology system in Shandong Province-Jinan comprehensive test station(SDAIT-06-21)
文摘At present,the grape and cherry industries in Shandong are in the leading position in China and have driven the development of related high-end manufacturing industries such as wine,brandy,preserved fruit processing,fruit juice processing and health products. Therefore,vigorously developing the grape and cherry industries in Shandong Province and carrying out development and innovation are important parts of Shandong Province in responding to the strategy of national new and old kinetic energy conversion. However,currently the germplasm resources preserved in the fruit tree resources banks in China are only 45% of those in the US and 27. 2% of those in the EU. Moreover,the development of fruit trees resources banks in Shandong is relatively backward in China,and there is still no banks related with grape and cherry germplasm resources in Shandong. Therefore,importance can be attached to the agriculture,forestry,and animal husbandry to build germplasm resources banks for grape and cherry industries in Shandong Province. Building the national-level grape and cherry germplasm resources bank in Shandong Province can also promote the utilization of wild and farm germplasm resources in the future; advance the research on the genes related to disease resistance,stress resistance and quality of grapes and cherries; push forward the construction and development of cherry and grape mutants banks. It is conducive to the research on the agronomic traits of grapes and cherries,and can provide the parents resources for planting innovation and improving the quality of grapes and cherries,as well as promote the development and application of molecular markers of grapes and cherries,including the identification of lines and crossbreeding. Thereby,it cannot only promote the industry development,but also achieve the development of cultivation,breeding and basic research in an all-round way and the development of " production,study and research" going side by side.