Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the...Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the inversion symmetry,we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors.It is found that the antisymmetric sector can be reduced to a one-band system near half filling,while the symmetric bands occupied by about two electrons are heavily overdoped individually.Using the strong coupling mean field theory,we obtain strong superconducting pairing with B_(1g)symmetry in the antisymmetric sector.We propose that due to the spin-orbital exchange coupling between the two sectors,B_(1g)pairing is induced in the symmetric bands,which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La_(3)Ni_(2)O_(7).展开更多
The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite supercond...The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite superconductor Ba_(x)Ir_(4)Sb_(12)(x=0.8,0.9,1.0),synthesized via a high-pressure route.Transport measurements down to liquid 3He temperatures reveal a transition temperature(T_(c))of 1.2 K and an upper critical field(H_(c2))of 1.3 T.Unlike other superconductors with caged structures,the Ba_(x)Ir_(4)Sb_(12)(X=P,As,Sb)family exhibits a monotonic decreasing T_(c) with the enhancement of the rattling mode,as indicated by fitting the Bloch–Grüneisen formula.Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb3 into a metal,with the Fermi surface dominated by the hybridization of Ir 5d and Sb 5p orbitals.Our findings of decoupled rattling modes and superconductivity distinguish the Ba_(x)Ir_(4)Sb_(12) family from other caged superconductors,warranting further exploration into the underlying mechanism.展开更多
The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of super...The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of superconductivity in other nickelates in a broader family is also essential.Here,we report the experimental observation of superconducting signature in trilayer nickelate La_(4)Ni_(3)O_(10)under high pressures.By using a modified solgel method and post-annealing treatment under high oxygen pressure,we successfully obtained polycrystalline La_(4)Ni_(3)O_(10)samples with different transport behaviors at ambient pressure.Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus.Surprisingly,the signature of possible superconducting transition with a maximum transition temperature(T_(c))of about 20K under high pressures is observed,as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields.Although the resistance drop is sample-dependent and relatively small,it appears in all of our measured samples.We argue that the observed superconducting signal is most likely to originate from the main phase of La_(4)Ni_(3)O_(10).Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-T_(c) superconductivity in nickelates.展开更多
Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the...Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the composition and interpretation of the observed sharp resistance drop.Here,we meticulously revisit these claims through comprehensive characterization and investigations.We definitively identify the reported material as lutetium dihydride(LuH_(2)),resolving the ambiguity surrounding its composition.Under similar conditions(270–295 K and 1–2 GPa),we replicate the reported sharp decrease in electrical resistance with a 30%success rate,aligning with the observations by Dasenbrock-Gammon et al.However,our extensive investigations reveal this phenomenon to be a novel pressure-induced metal-to-metal transition intrinsic to LuH_(2),distinct from superconductivity.Intriguingly,nitrogen doping exerts minimal impact on this transition.Our work not only elucidates the fundamental properties of LuH_(2)andLuH_(3),but also critically challenges the notion of superconductivity in these lutetium hydride systems.These findings pave the way for future research on lutetium hydride systems,while emphasizing the crucial importance of rigorous verification in claims of ambient-temperature superconductivity.展开更多
We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The s...We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The specific heat jump and calculated electron–phonon coupling indicate a moderate coupled BCS superconductor.In comparison with LaRu_(3)Si_(2),the calculated electronic structure in ThRu_(3)Si_(2)shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it.This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu_(3)Si_(2).Our work suggests the Tc and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.展开更多
Recent studies have shown that the La-and Y-hydrides can exhibit significant superconducting properties under high pressures.In this paper,we investigate the stability,electronic and superconducting properties of LaYH...Recent studies have shown that the La-and Y-hydrides can exhibit significant superconducting properties under high pressures.In this paper,we investigate the stability,electronic and superconducting properties of LaYH_(x)(x=2,3,6 and 8)under 0-200 GPa.It is found that LaYH_(2) stabilizes in the C2/m phase at ambient pressure,and transforms to the Pmmn phase at 67 GPa.LaYH_(3) stabilizes in the C2/m phase at ambient pressure,and undergoes phase transitions of C2/m→P2_(1)/m→R3m at 12 GPa and 87 GPa,respectively.LaYH_(6) stabilizes in the P4_32_12 phase at ambient pressure,and undergoes phase transitions of P4_(3)2_(1)2→P4/mmm→Cmcm at 28 GPa and 79 GPa,respectively.LaYH_(8) stabilizes in the Imma phase at 60 GPa and transforms to the P4/mmm phase at 117 GPa.Calculations of the electronic band structures show that the P4/mmm-LaYH_(8) and all phases of LaYH_(2) and LaYH_(3) exhibit metallic character.For the metallic phases,we then study their superconducting properties.The calculated superconducting transition temperatures(T_c)are 0.47 K for C2/m-LaYH_(2) at 0 GPa,0 K for C2/m-LaYH_(3) at 0 GPa,and 55.51 K for P4/mmm-LaYH_(8) at 50 GPa.展开更多
We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used ...We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.展开更多
The recent report of superconductivity in nitrogen-doped lutetium hydride(Lu-H-N)at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors.However,the failure of scientists worldwide to i...The recent report of superconductivity in nitrogen-doped lutetium hydride(Lu-H-N)at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors.However,the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim.In this work,using a reliable experimental protocol,we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature.With quantitative comparison of the temperaturedependent resistance between Lu-H-N and the pure lutetium before reaction,we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity.Herein,we also briefly discuss other issues recently raised in relation to the Lu-H-N system.展开更多
We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating ...We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating techniques.The superconductivity was investigated via resistance measurements at pressures.The highest superconducting transition temperature T_(c)was found to be~30 K at 197 GPa in the sample that was synthesized at the same pressure with~2000 K heating.The transitions are shifted to low temperature upon applying magnetic fields that support the superconductivity nature.The upper critical field at zero temperatureμ_0H_(c2)(0)of the superconducting phase is estimated to be~20 T that corresponds to Ginzburg-Landau coherent length~40 A.Our results suggest that the superconductivity may arise from 143d phase of TaH_(3).It is,for the first time to our best knowledge,experimental realization of superconducting hydrides for the VB group of transition metals.展开更多
A material described as lutetium–hydrogen–nitrogen(Lu-H-N in short)was recently claimed to have“near-ambient superconductivity”[Dasenbrock-Gammon et al.,Nature 615,244–250(2023)].If this result could be reproduce...A material described as lutetium–hydrogen–nitrogen(Lu-H-N in short)was recently claimed to have“near-ambient superconductivity”[Dasenbrock-Gammon et al.,Nature 615,244–250(2023)].If this result could be reproduced by other teams,it would be a major scientific breakthrough.Here,we report our results of transport and structure measurements on a material prepared using the same method as reported by Dasenbrock-Gammon et al.Our x-ray diffraction measurements indicate that the obtained sample contains three substances:the facecentered-cubic(FCC)-1 phase(Fm-3m)with lattice parameter a=5.03Å,the FCC-2 phase(Fm-3m)with a lattice parameter a=4.755Å,and Lu metal.The two FCC phases are identical to the those reported in the so-called near-ambient superconductor.However,we find from our resistance measurements in the temperature range from 300 K down to 4 K and the pressure range 0.9–3.4 GPa and our magnetic susceptibility measurements in the pressure range 0.8–3.3 GPa and the temperature range down to 100 K that the samples show no evidence of superconductivity.We also use a laser heating technique to heat a sample to 1800 XC and find no superconductivity in the produced dark blue material below 6.5 GPa.In addition,both samples remain dark blue in color in the pressure range investigated.展开更多
Complex oxide heterointerfaces can host a rich of emergent phenomena,and epitaxial growth is usually at the heart of forming these interfaces.Recently,a strong crystalline-orientation-dependent two-dimensional superco...Complex oxide heterointerfaces can host a rich of emergent phenomena,and epitaxial growth is usually at the heart of forming these interfaces.Recently,a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO_(3)single-crystal substrates and films of other oxides.Unexpectedly,rare of these oxide films was epitaxially grown.Here,we report the existence of superconductivity in epitaxially grown LaVO_(3)/KTaO_(3)(111)heterostructures,with a superconducting transition temperature of~0.5 K.Meanwhile,no superconductivity was detected in the(001)-and(110)-orientated LaVO_(3)/KTaO_(3)heterostructures down to 50 mK.Moreover,we find that for the LaVO_(3)/KTaO_(3)(111)interfaces to be conducting,an oxygen-deficient growth environment and a minimum LaVO_(3)thickness of~0.8 nm(~2 unit cells)are needed.展开更多
Recently,room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure[Dasenbrock-Gammon et al.,Nature 615,244(2023)].The superconducting properties might arise fro...Recently,room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure[Dasenbrock-Gammon et al.,Nature 615,244(2023)].The superconducting properties might arise from Fm3m-LuH_(3)−δNε.Here,we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations,and we do not find any thermodynamically stable ternary compounds.In addition,we calculate the dynamic stability and superconducting properties of N-doped Fm3m-LuH_(3) using the virtual crystal approximation(VCA)and the supercell method.The R3m-Lu_(2)H_(5)N predicted using the supercell method could be dynamically stable at 50 GPa,with a T_(c) of 27 K.According to the VCA method,the highest T_(c) is 22 K,obtained with 1%N-doping at 30 GPa.Moreover,the doping of nitrogen atoms into Fm3m-LuH_(3) slightly enhances T_(c),but raises the dynamically stable pressure.Our theoretical results show that the T_(c) values of N-doped LuH_(3) estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.展开更多
High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,...High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,and sample orientations.It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3film.For the curved Nb/PI film,smooth superconducting transitions were obtained at low currents,while unexpected cascade structures were revealed in theρ(T)curves at high currents.We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film.In addition,reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions.We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices.This work reveals the complex transport properties of curved superconducting thin films,providing important insights for further theoretical investigations and practical developments of flexible superconductors.展开更多
Using first-principles calculations, we predict a new type of two-dimensional(2D) boride MB3(M = Be,Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. T...Using first-principles calculations, we predict a new type of two-dimensional(2D) boride MB3(M = Be,Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. The band structures show that the three MB3compounds are metallic, thus the possible phononmediated superconductivity is explored. Based on the Eliashberg equation, for BeB3, CaB3, and SrB3, the calculated electron–phonon coupling constants λ are 0.46, 1.09, and 1.33, and the corresponding superconducting transition temperatures Tc are 3.2, 22.4, and 20.9 K, respectively. To explore superconductivity with higher transition temperature, hydrogenation and charge doping are further considered. The hydrogenated CaB3, i.e.,HCaB3, is stable, with the enhanced λ of 1.39 and a higher Tc of 39.3 K. Moreover, with further hole doping at the concentration of 5.8 × 1011hole/cm2, the Tc of HCaB3can be further increased to 44.2 K, exceeding the Mc Millan limit. The predicted MB3and HCaB3provide new platforms for investigating 2D superconductivity in boron kagome lattice since superconductivity based on monolayer boron kagome lattice has not been studied before.展开更多
Magnetic CeTe_(2)achieving superconductivity under external pressure has received considerable attention.The intermingling of 4f and 5d electrons from Ce raised the speculation of an unconventional pairing mechanism a...Magnetic CeTe_(2)achieving superconductivity under external pressure has received considerable attention.The intermingling of 4f and 5d electrons from Ce raised the speculation of an unconventional pairing mechanism arising from magnetic fluctuations.Here,we address this speculation using a nonmagnetic 4f-electron-free LaTe_(2)as an example.No structural phase transition can be observed up to 35 GPa in the in situ synchrotron diffraction patterns.Subsequent high-pressure electrical measurements show that LaTe_(2)exhibits superconductivity at20 Gpa with its T_(c)(4.5 K)being two times higher than its Ce-counterpart.Detailed theoretical calculations reveal that charge transfer from the 4p orbitals of the planar square Te-Te network to the 5d orbitals of La is responsible for the emergence of superconductivity in LaTe_(2),as confirmed by Hall experiments.Furthermore,we study the modulation of q_(CDW)by Sb substitution and find a record high T_(c)^(onset)~6.5 K in LaTe_(1.6)Sb_(0.4).Our work provides an informative clue to comprehend the role of 5d-4p hybridization in the relationship between charge density wave(CDW)and superconductivity in these RETe_(2)(RE=rare-earth elements)compounds.展开更多
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f...The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.展开更多
The kagome superconductor CsV_(3)Sb_(5) with exotic electronic properties has attracted substantial research interest,and the interplay between the superconductivity and the charge-density wave is crucial for understa...The kagome superconductor CsV_(3)Sb_(5) with exotic electronic properties has attracted substantial research interest,and the interplay between the superconductivity and the charge-density wave is crucial for understanding its unusual electronic ground state.In this work,we performed resistivity and AC magnetic susceptibility measurements on CsV_(3)Sb_(5) single crystals uniaxially-strained along[100]and[110]directions.We find that the uniaxial-strain tuning effect of T_(c)(dT_(c)/dε)and T_(CDW)(dT_(CDW)/dε)are almost identical along these distinct high-symmetry directions.These findings suggest the in-plane uniaxial-strain-tuning of T_(c) and T_(CDW)in CsV_(3)Sb_(5) are dominated by associated c-axis strain,whereas the response to purely in-plane strains is likely small.展开更多
As a platform for holding Majorana zero models(MZMs),the two-dimensional planar topological Josephson junction that can be used as carriers for topological quantum computing faces some challenges.One is a combination ...As a platform for holding Majorana zero models(MZMs),the two-dimensional planar topological Josephson junction that can be used as carriers for topological quantum computing faces some challenges.One is a combination of mirror and time-reversal symmetries may make the system hold multiple pairs of MZMs.The other is that a soft gap dominated by a large momentum occurs in a clean system.To solve these problems,asymmetric junction can be introduced.Breaking this symmetry changes the symmetry class from class BDI to class D,and only a single pair of MZMs can be left at the boundary of the system.We numerically study four cases that create an asymmetric system and find out different superconducting pairing potential,different coupling coefficients between two-dimensional electron gases(2DEGs)and two superconducting bulks,different widths of two superconducting bulks make the gap of the system decrease at the optimal value,but make the gap at the minimum value increases.And the zigzag-shape quasi-one-dimensional junction eliminates the large momentum parallel to the junction and enhances the gap at the large momentum.However,the zigzag-shape junction cannot increase the gap at the region of multiple pairs of MZMs in a symmetric system.We show that by combining zigzag-shape junction with different coupling coefficients,the system can maintain a large gap(≈0.2△)in a wide region of the parameter space.展开更多
The mystery of superconductivity has intrigued scientists for 110 years now. The author in 2014 specifically predicted the superconductivity in carbon, sulfur and hydrogen compounds and generally predicted carbonaceou...The mystery of superconductivity has intrigued scientists for 110 years now. The author in 2014 specifically predicted the superconductivity in carbon, sulfur and hydrogen compounds and generally predicted carbonaceous, hydrogeneous and sulfurous compounds in 2005 with reference to scattering to asymmetric orbital motions and associated spin and orbital exchanges between nuclei and electrons. The emphasis was in 2005 upon stronger electron and nuclear interactions and electron-phonon effects. But here the author develops more the un-gerade parity of the p and f orbitals and their contributions to the superconductivity at lower pressures and higher temperatures. On the bases of such, the role of parity from the origin and inflation of the Universe is noted and dark and bright energies and matters in the mature Universe are reasoned. Moreover, the superconductors are all reasoned by positive and negative nuclear magnetic moments (NMMs) with availability of un-gerade parities of p and f subshells and their orbitals. In addition to superconductivity, such positive and negative NMMs by Little Effect is presented for explaining Pomeranchuk Effect and thereby further explaining superconductivity and superfluidity of <sup>3</sup>He. On the bases of successes of Little Effect via positive and negative NMMs, in particular negative NMMs of <sup>3</sup>He, the superconductivity in twisted graphene is explained and also its recently discovered Pomeranchuk Effect.展开更多
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X<...The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge.展开更多
基金the National Key R&D Program of China(Grant No.2022YFA1403900)the National Natural Science Foundation of China(Grant Nos.11888101,12174428,and 11920101005)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB28000000 and XDB33000000)the New Cornerstone Investigator Programthe Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.2022YSBR-048)supported by the U.S.Department of Energy,Basic Energy Sciences(Grant No.DE-FG02-99ER45747)。
文摘Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the inversion symmetry,we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors.It is found that the antisymmetric sector can be reduced to a one-band system near half filling,while the symmetric bands occupied by about two electrons are heavily overdoped individually.Using the strong coupling mean field theory,we obtain strong superconducting pairing with B_(1g)symmetry in the antisymmetric sector.We propose that due to the spin-orbital exchange coupling between the two sectors,B_(1g)pairing is induced in the symmetric bands,which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La_(3)Ni_(2)O_(7).
基金supported by Beijing Natural Science Foundation (Grant No.Z200005)the National Key Research and Development Program of China (Grant No.2021YFA1401800)the National Natural Science Foundation of China (Grant Nos.52272267 and 52202342)。
文摘The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite superconductor Ba_(x)Ir_(4)Sb_(12)(x=0.8,0.9,1.0),synthesized via a high-pressure route.Transport measurements down to liquid 3He temperatures reveal a transition temperature(T_(c))of 1.2 K and an upper critical field(H_(c2))of 1.3 T.Unlike other superconductors with caged structures,the Ba_(x)Ir_(4)Sb_(12)(X=P,As,Sb)family exhibits a monotonic decreasing T_(c) with the enhancement of the rattling mode,as indicated by fitting the Bloch–Grüneisen formula.Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb3 into a metal,with the Fermi surface dominated by the hybridization of Ir 5d and Sb 5p orbitals.Our findings of decoupled rattling modes and superconductivity distinguish the Ba_(x)Ir_(4)Sb_(12) family from other caged superconductors,warranting further exploration into the underlying mechanism.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403201)the National Natural Science Foundation of China(Grant Nos.12204231,12061131001,52072170,and 11927809)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB25000000).
文摘The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of superconductivity in other nickelates in a broader family is also essential.Here,we report the experimental observation of superconducting signature in trilayer nickelate La_(4)Ni_(3)O_(10)under high pressures.By using a modified solgel method and post-annealing treatment under high oxygen pressure,we successfully obtained polycrystalline La_(4)Ni_(3)O_(10)samples with different transport behaviors at ambient pressure.Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus.Surprisingly,the signature of possible superconducting transition with a maximum transition temperature(T_(c))of about 20K under high pressures is observed,as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields.Although the resistance drop is sample-dependent and relatively small,it appears in all of our measured samples.We argue that the observed superconducting signal is most likely to originate from the main phase of La_(4)Ni_(3)O_(10).Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-T_(c) superconductivity in nickelates.
基金the National Key Research and Development Program of China(Grant Nos.2022YFA1402301 and 2018YFA0305703)the National Natural Science Foundation of China(Grant No.U2230401)+2 种基金the National Key R&D Program of China(Grant No.2021YFA1400200),the National Natural Science Foundation of China(Grant Nos.12025408 and 11921004)the Strategic Priority Research Program of CAS(Grant No.XDB33000000).
文摘Following the recent report by Dasenbrock-Gammon et al.[Nature 615,244–250(2023)]of near-ambient superconductivity in nitrogendoped lutetium trihydride(LuH_(3-δ)N_(ε)),significant debate has emerged surrounding the composition and interpretation of the observed sharp resistance drop.Here,we meticulously revisit these claims through comprehensive characterization and investigations.We definitively identify the reported material as lutetium dihydride(LuH_(2)),resolving the ambiguity surrounding its composition.Under similar conditions(270–295 K and 1–2 GPa),we replicate the reported sharp decrease in electrical resistance with a 30%success rate,aligning with the observations by Dasenbrock-Gammon et al.However,our extensive investigations reveal this phenomenon to be a novel pressure-induced metal-to-metal transition intrinsic to LuH_(2),distinct from superconductivity.Intriguingly,nitrogen doping exerts minimal impact on this transition.Our work not only elucidates the fundamental properties of LuH_(2)andLuH_(3),but also critically challenges the notion of superconductivity in these lutetium hydride systems.These findings pave the way for future research on lutetium hydride systems,while emphasizing the crucial importance of rigorous verification in claims of ambient-temperature superconductivity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12050003,12004337,and 12274369)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21A040011)。
文摘We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The specific heat jump and calculated electron–phonon coupling indicate a moderate coupled BCS superconductor.In comparison with LaRu_(3)Si_(2),the calculated electronic structure in ThRu_(3)Si_(2)shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it.This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu_(3)Si_(2).Our work suggests the Tc and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12364003,11804131,11704163,12375014,and 11875149)the Natural Science Foundation of Jiangxi Province of China (Grant Nos.20232BAB211022 and 20181BAB211007)。
文摘Recent studies have shown that the La-and Y-hydrides can exhibit significant superconducting properties under high pressures.In this paper,we investigate the stability,electronic and superconducting properties of LaYH_(x)(x=2,3,6 and 8)under 0-200 GPa.It is found that LaYH_(2) stabilizes in the C2/m phase at ambient pressure,and transforms to the Pmmn phase at 67 GPa.LaYH_(3) stabilizes in the C2/m phase at ambient pressure,and undergoes phase transitions of C2/m→P2_(1)/m→R3m at 12 GPa and 87 GPa,respectively.LaYH_(6) stabilizes in the P4_32_12 phase at ambient pressure,and undergoes phase transitions of P4_(3)2_(1)2→P4/mmm→Cmcm at 28 GPa and 79 GPa,respectively.LaYH_(8) stabilizes in the Imma phase at 60 GPa and transforms to the P4/mmm phase at 117 GPa.Calculations of the electronic band structures show that the P4/mmm-LaYH_(8) and all phases of LaYH_(2) and LaYH_(3) exhibit metallic character.For the metallic phases,we then study their superconducting properties.The calculated superconducting transition temperatures(T_c)are 0.47 K for C2/m-LaYH_(2) at 0 GPa,0 K for C2/m-LaYH_(3) at 0 GPa,and 55.51 K for P4/mmm-LaYH_(8) at 50 GPa.
基金Project supported by the Natural Science Basic Research Program of Shaanxi(Program Nos.2023KJXX-064 and 2021JQ-748)the National Natural Science Foundation of China(Grant Nos.11804213 and 12174238)Scientific Research Foundation of Shaanxi University of Technology(Grant No.SLGRCQD2006).
文摘We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.
文摘The recent report of superconductivity in nitrogen-doped lutetium hydride(Lu-H-N)at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors.However,the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim.In this work,using a reliable experimental protocol,we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature.With quantitative comparison of the temperaturedependent resistance between Lu-H-N and the pure lutetium before reaction,we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity.Herein,we also briefly discuss other issues recently raised in relation to the Lu-H-N system.
基金the National Natural Science Foundation of China(Grant No.11921004)the National Key R&D Program of China(Grant Nos.2021YFA1401800 and 2022YFA1402301)+2 种基金Chinese Academy of Sciences(Grant No.XDB33010200)supported by the National Science Foundation Earth Sciences(EAR 1634415)used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory(Grant No.DEAC02-06CH11357)。
文摘We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating techniques.The superconductivity was investigated via resistance measurements at pressures.The highest superconducting transition temperature T_(c)was found to be~30 K at 197 GPa in the sample that was synthesized at the same pressure with~2000 K heating.The transitions are shifted to low temperature upon applying magnetic fields that support the superconductivity nature.The upper critical field at zero temperatureμ_0H_(c2)(0)of the superconducting phase is estimated to be~20 T that corresponds to Ginzburg-Landau coherent length~40 A.Our results suggest that the superconductivity may arise from 143d phase of TaH_(3).It is,for the first time to our best knowledge,experimental realization of superconducting hydrides for the VB group of transition metals.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)the NSF of China(Grant Nos.U2032214,12104487,12122414,and 12004419)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)J.G.and S.C.are grateful for support from the Youth Innovation Promotion Association of the CAS(Grant No.2019008)the China Postdoctoral Science Foundation(Grant No.E0BK111).
文摘A material described as lutetium–hydrogen–nitrogen(Lu-H-N in short)was recently claimed to have“near-ambient superconductivity”[Dasenbrock-Gammon et al.,Nature 615,244–250(2023)].If this result could be reproduced by other teams,it would be a major scientific breakthrough.Here,we report our results of transport and structure measurements on a material prepared using the same method as reported by Dasenbrock-Gammon et al.Our x-ray diffraction measurements indicate that the obtained sample contains three substances:the facecentered-cubic(FCC)-1 phase(Fm-3m)with lattice parameter a=5.03Å,the FCC-2 phase(Fm-3m)with a lattice parameter a=4.755Å,and Lu metal.The two FCC phases are identical to the those reported in the so-called near-ambient superconductor.However,we find from our resistance measurements in the temperature range from 300 K down to 4 K and the pressure range 0.9–3.4 GPa and our magnetic susceptibility measurements in the pressure range 0.8–3.3 GPa and the temperature range down to 100 K that the samples show no evidence of superconductivity.We also use a laser heating technique to heat a sample to 1800 XC and find no superconductivity in the produced dark blue material below 6.5 GPa.In addition,both samples remain dark blue in color in the pressure range investigated.
基金the National Natural Science Foundation of China(Grant Nos.11934016 and 12074334)the Key R&D Program of Zhejiang Province,China(Grant Nos.2020C01019 and 2021C01002)the Fundamental Research Funds for the Central Universities of China.
文摘Complex oxide heterointerfaces can host a rich of emergent phenomena,and epitaxial growth is usually at the heart of forming these interfaces.Recently,a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO_(3)single-crystal substrates and films of other oxides.Unexpectedly,rare of these oxide films was epitaxially grown.Here,we report the existence of superconductivity in epitaxially grown LaVO_(3)/KTaO_(3)(111)heterostructures,with a superconducting transition temperature of~0.5 K.Meanwhile,no superconductivity was detected in the(001)-and(110)-orientated LaVO_(3)/KTaO_(3)heterostructures down to 50 mK.Moreover,we find that for the LaVO_(3)/KTaO_(3)(111)interfaces to be conducting,an oxygen-deficient growth environment and a minimum LaVO_(3)thickness of~0.8 nm(~2 unit cells)are needed.
基金This work was supported by the National Key R&D Program of China(Grant Nos.2018YFA0305900 and 2022YFA1402304)the National Natural Science Foundation of China(Grant Nos.12122405,52072188,and 12274169)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT_15R23)a Jilin Provincial Science and Technology Development Project(Grant No.20210509038RQ).Some of the calculations were performed at the High Performance Computing Center of Jilin University and on TianHe-1(A)at the National Supercomputer Center in Tianjin.
文摘Recently,room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure[Dasenbrock-Gammon et al.,Nature 615,244(2023)].The superconducting properties might arise from Fm3m-LuH_(3)−δNε.Here,we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations,and we do not find any thermodynamically stable ternary compounds.In addition,we calculate the dynamic stability and superconducting properties of N-doped Fm3m-LuH_(3) using the virtual crystal approximation(VCA)and the supercell method.The R3m-Lu_(2)H_(5)N predicted using the supercell method could be dynamically stable at 50 GPa,with a T_(c) of 27 K.According to the VCA method,the highest T_(c) is 22 K,obtained with 1%N-doping at 30 GPa.Moreover,the doping of nitrogen atoms into Fm3m-LuH_(3) slightly enhances T_(c),but raises the dynamically stable pressure.Our theoretical results show that the T_(c) values of N-doped LuH_(3) estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2021YFA0718700,2018YFB0704102,2017YFA0303003,2017YFA0302902,2016YFA0300301,and 2021YFA0718802)the National Natural Science Foundation of China(Grant Nos.11927808,11834016,118115301,119611410,11961141008,61727805+5 种基金11961141002)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(Grant Nos.QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)CAS Interdisciplinary Innovation Team,the Strategic Priority Research Program(B)of CAS(Grant Nos.XDB25000000and XDB33000000)the Beijing Natural Science Foundation(Grant No.Z190008)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101340002)the support from the China Postdoctoral Science Foundation(Grant No.2022M711497)。
文摘High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,and sample orientations.It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3film.For the curved Nb/PI film,smooth superconducting transitions were obtained at low currents,while unexpected cascade structures were revealed in theρ(T)curves at high currents.We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film.In addition,reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions.We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices.This work reveals the complex transport properties of curved superconducting thin films,providing important insights for further theoretical investigations and practical developments of flexible superconductors.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074213,11574108,and 12104253)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)+1 种基金the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Provincethe Texas Center for Superconductivity at University of Houston,the Robert A.Welch Foundation(Grant No.E-1146)。
文摘Using first-principles calculations, we predict a new type of two-dimensional(2D) boride MB3(M = Be,Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. The band structures show that the three MB3compounds are metallic, thus the possible phononmediated superconductivity is explored. Based on the Eliashberg equation, for BeB3, CaB3, and SrB3, the calculated electron–phonon coupling constants λ are 0.46, 1.09, and 1.33, and the corresponding superconducting transition temperatures Tc are 3.2, 22.4, and 20.9 K, respectively. To explore superconductivity with higher transition temperature, hydrogenation and charge doping are further considered. The hydrogenated CaB3, i.e.,HCaB3, is stable, with the enhanced λ of 1.39 and a higher Tc of 39.3 K. Moreover, with further hole doping at the concentration of 5.8 × 1011hole/cm2, the Tc of HCaB3can be further increased to 44.2 K, exceeding the Mc Millan limit. The predicted MB3and HCaB3provide new platforms for investigating 2D superconductivity in boron kagome lattice since superconductivity based on monolayer boron kagome lattice has not been studied before.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0202600,2021YFA1401800,2017YFA0304700)the National Natural Science Foundation of China(Grant Nos.51922105,11804184,11974208,11774424,12174443,U1932217,and11974246)+1 种基金Beijing Natural Science Foundation(Grant No.Z200005)supported by the Synergetic Extreme Condition User Facility(SECUF)。
文摘Magnetic CeTe_(2)achieving superconductivity under external pressure has received considerable attention.The intermingling of 4f and 5d electrons from Ce raised the speculation of an unconventional pairing mechanism arising from magnetic fluctuations.Here,we address this speculation using a nonmagnetic 4f-electron-free LaTe_(2)as an example.No structural phase transition can be observed up to 35 GPa in the in situ synchrotron diffraction patterns.Subsequent high-pressure electrical measurements show that LaTe_(2)exhibits superconductivity at20 Gpa with its T_(c)(4.5 K)being two times higher than its Ce-counterpart.Detailed theoretical calculations reveal that charge transfer from the 4p orbitals of the planar square Te-Te network to the 5d orbitals of La is responsible for the emergence of superconductivity in LaTe_(2),as confirmed by Hall experiments.Furthermore,we study the modulation of q_(CDW)by Sb substitution and find a record high T_(c)^(onset)~6.5 K in LaTe_(1.6)Sb_(0.4).Our work provides an informative clue to comprehend the role of 5d-4p hybridization in the relationship between charge density wave(CDW)and superconductivity in these RETe_(2)(RE=rare-earth elements)compounds.
基金This work is funded by the Magnetic Resonance Union of the Chinese Academy of Sciences(Grant No.2021gzl002)the International Partnership Program of Chinese Academy of Sciences(Grant No.182111KYSB20210014)+1 种基金the National Science Foundation of China(Grant No.52293423,Grant No.52277031)the Research and Development of Key Technologies and Equipment for Major Science and Technology Infrastructure of Development and Reform Commission of Shenzhen Municipality,China(Grant No.ZDKJ20190305002).
文摘The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.
基金supported by the National Key Projects for Research and Development of China (Grant No.2021YFA1400400)the National Natural Science Foundation of China (Grant Nos.12174029 and 11922402)+3 种基金supported by the National Key Research and Development Program of China (Grant No.2022YFA1402200)the Pioneer and Leading Goose Research and Development Program of Zhejiang Province,China (Grant No.2022SDX-HDX0005)the Key Research and Development Program of Zhejiang Province,China (Grant No.2021C01002)the National Natural Science Foundation of China (Grant No.12274363)。
文摘The kagome superconductor CsV_(3)Sb_(5) with exotic electronic properties has attracted substantial research interest,and the interplay between the superconductivity and the charge-density wave is crucial for understanding its unusual electronic ground state.In this work,we performed resistivity and AC magnetic susceptibility measurements on CsV_(3)Sb_(5) single crystals uniaxially-strained along[100]and[110]directions.We find that the uniaxial-strain tuning effect of T_(c)(dT_(c)/dε)and T_(CDW)(dT_(CDW)/dε)are almost identical along these distinct high-symmetry directions.These findings suggest the in-plane uniaxial-strain-tuning of T_(c) and T_(CDW)in CsV_(3)Sb_(5) are dominated by associated c-axis strain,whereas the response to purely in-plane strains is likely small.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974271)。
文摘As a platform for holding Majorana zero models(MZMs),the two-dimensional planar topological Josephson junction that can be used as carriers for topological quantum computing faces some challenges.One is a combination of mirror and time-reversal symmetries may make the system hold multiple pairs of MZMs.The other is that a soft gap dominated by a large momentum occurs in a clean system.To solve these problems,asymmetric junction can be introduced.Breaking this symmetry changes the symmetry class from class BDI to class D,and only a single pair of MZMs can be left at the boundary of the system.We numerically study four cases that create an asymmetric system and find out different superconducting pairing potential,different coupling coefficients between two-dimensional electron gases(2DEGs)and two superconducting bulks,different widths of two superconducting bulks make the gap of the system decrease at the optimal value,but make the gap at the minimum value increases.And the zigzag-shape quasi-one-dimensional junction eliminates the large momentum parallel to the junction and enhances the gap at the large momentum.However,the zigzag-shape junction cannot increase the gap at the region of multiple pairs of MZMs in a symmetric system.We show that by combining zigzag-shape junction with different coupling coefficients,the system can maintain a large gap(≈0.2△)in a wide region of the parameter space.
文摘The mystery of superconductivity has intrigued scientists for 110 years now. The author in 2014 specifically predicted the superconductivity in carbon, sulfur and hydrogen compounds and generally predicted carbonaceous, hydrogeneous and sulfurous compounds in 2005 with reference to scattering to asymmetric orbital motions and associated spin and orbital exchanges between nuclei and electrons. The emphasis was in 2005 upon stronger electron and nuclear interactions and electron-phonon effects. But here the author develops more the un-gerade parity of the p and f orbitals and their contributions to the superconductivity at lower pressures and higher temperatures. On the bases of such, the role of parity from the origin and inflation of the Universe is noted and dark and bright energies and matters in the mature Universe are reasoned. Moreover, the superconductors are all reasoned by positive and negative nuclear magnetic moments (NMMs) with availability of un-gerade parities of p and f subshells and their orbitals. In addition to superconductivity, such positive and negative NMMs by Little Effect is presented for explaining Pomeranchuk Effect and thereby further explaining superconductivity and superfluidity of <sup>3</sup>He. On the bases of successes of Little Effect via positive and negative NMMs, in particular negative NMMs of <sup>3</sup>He, the superconductivity in twisted graphene is explained and also its recently discovered Pomeranchuk Effect.
文摘The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge.