期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Multi sites vs single site for catalytic combustion of methane over Co3O4(110):A first-principles kinetic Monte Carlo study 被引量:3
1
作者 Wende Hu Zheng-Jiang Shao +1 位作者 Xiao-Ming Cao P.Hu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第9期1369-1377,共9页
Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete ... Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete catalytic cycle of CH4 combustion assuming to be confined at isolated single sites of the Co3O4(110)surface is computationally compared with that on multi sites.The macroscopic kinetic behaviors of CH4 combustion on Co3O4(110)is systematically and quantitatively compared between those on the single site and multi sites utilizing kinetic Monte Carlo simulations upon the energetic information from the PBE+U calculation and statistic mechanics.The key factors governing the kinetics of CH4 combustion are disclosed for both the catalytic cycles respectively following the single-site and multi-site mechanisms.It is found that cooperation of multi active sites can promote the activity of complete CH4 combustions substantially in comparison to separated single-site catalyst whereas the confinement of active sites could regulate the selectivity of CH4 oxidation.The quantitative understanding of catalytic mechanism paves the way to improve the activity and selectivity for CH4 oxidation. 展开更多
关键词 Methane combustion DFT Single atom catalyst Multi site Single site Spinel cobalt oxides Kinetic monte carlo
下载PDF
Kinetic Monte Carlo Simulation of EB-PVD Film:Effects of Substrate Temperature 被引量:1
2
作者 SHAN Ying-chun HE Xiao-dong +2 位作者 LI Ming-wei LI Yao XU Jiu-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期86-90,共5页
The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor dep... The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor deposition (EB-PVD). In the KMC model, substrate was assumed to be a "surface" of tight-packed rows, and the simulation includes two phenomena: adatom-surface collision and adatom diffusion. While the interaction between atoms was described by the embedded atom method, the jumping energy was calculated by the molecular static (MS) calculation. The initial location of the adatom was defined by the Momentum Scheme. The results reveal that there exists a critical substrate temperature which means that the lowest packing density and the highest surface roughness structure will be achieved when the temperature is lower than the smaller critical value, while the roughness of both surfaces and the void contents keep decreasing with the substrate temperature increasing until it reaches the higher critical value. The results also indicate that the critical substrate temperature rises as the deposition rate increases. 展开更多
关键词 substrate temperature FILM kinetic monte carlo EB-PVD
下载PDF
Influence of CH_3SiCl_3 Consistency on Growth Process of SiC Film by Kinetic Monte Carlo Method 被引量:1
3
作者 刘翠霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期871-875,共5页
CH3SiCl3 (MTS)-H2-Ar system has been applied to prepare SiC film with chemical vapor deposition (CVD) method in this paper. For three facets of SiC film, some significant influence on growth rate, surface roughnes... CH3SiCl3 (MTS)-H2-Ar system has been applied to prepare SiC film with chemical vapor deposition (CVD) method in this paper. For three facets of SiC film, some significant influence on growth rate, surface roughness, thickness and relative density brought by MTS consistency has been mainly discussed with kinetic monte carlo (KMC) method. The simulation results show that there is a certain scale for mol ratio of H2 to MTS (H2/MTS) with different deposition temperature. When MTS consistency increases, growth rate and surface roughness of three facets all increase, which manifests approximate linearity relationship. Thickness of three facets also increases while increasing trend of three facets thickness is different obviously. Although relative density of three facets all increases, increasing trend shows a little difference with MTS consistency increasing. 展开更多
关键词 SiC film chemical vapor deposition kinetic monte carlo
下载PDF
Kinetic Monte Carlo simulations of optimization of self-assembly quantum rings growth strategy based on substrate engineering
4
作者 刘建涛 冯昊 +5 位作者 俞重远 刘玉敏 石强 宋鑫 张文 彭益炜 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期382-388,共7页
In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. Acc... In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. According to the simulation results, the availability of the QR with tunable size and the formation of smooth shape on the ideal flat substrate are checked. Through designing the substrate engineering, i.e., changing the depth, the separation and the ratio between the radius and the height of the embedded inclusions, the position and size of QR can be controlled and eventually the growth strategy of optimizing the self-assembly QRs is accomplished. 展开更多
关键词 quantum rings kinetic monte carlo SELF-ASSEMBLY substrate engineering
下载PDF
Influence of helium on the evolution of irradiation-induced defects in tungsten:An object kinetic Monte Carlo simulation
5
作者 Peng-Wei Hou Yu-Hao Li +5 位作者 Zhong-Zhu Li Li-Fang Wang Xingyu Gao Hong-Bo Zhou Haifeng Song Guang-Hong Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期94-101,共8页
Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation.Hereby,we systematically investigate the influence of He on th... Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation.Hereby,we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten(W)via using the object kinetic Monte Carlo(OKMC)method.Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects.On the one hand,the presence of He can facilitate the recombination of vacancies and self-interstitial atoms(SIAs)in W.This can be attributed to the formation of immobile He-SIA complexes,which increases the annihilation probability of vacancies and SIAs.On the other hand,due to the high stability and low mobility of He-vacancy complexes,the growth of large vacancy clusters in W is kinetically suppressed by He addition.Specially,in comparison with the injection of collision cascades and He in sequential way at 1223 K,the average sizes of surviving vacancy clusters in W via simultaneous way are smaller,which is in good agreement with previous experimental observations.These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials,and contributes to our understanding of W performance under irradiation. 展开更多
关键词 TUNGSTEN HELIUM irradiation-induced defects object kinetic monte carlo
下载PDF
Magnetization dynamics of mixed Co–Au chains on Cu(110) substrate:Combined ab initio and kinetic Monte Carlo study
6
作者 K.M.Tsysar S.V.Kolesnikov A.M.Saletsky 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期474-478,共5页
We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(11... We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(110) on the magnetic properties of the bimetallic Au–Co nanowires is studied. The results show the emergence of magnetic anisotropy in the supported Au–Co nanowires. The magnetic anisotropy energy has the same order of magnitude as the exchange interaction energy between Co atoms in the wire. Our electronic structure calculation reveals the emergence of new hybridized bands between Au and Co atoms and surface Cu atoms. The Curie temperature of the Au–Co wires is calculated by means of kinetic Monte Carlo simulation. The strong size effect of the Curie temperature is demonstrated. 展开更多
关键词 magnetic properties NANOWIRES density functional theory kinetic monte carlo simulation
下载PDF
Kinetic Monte Carlo Simulation of Deposition of Co Thin Film on Cu(001)
7
作者 刘祖黎 石艳丽 +2 位作者 荆兴斌 喻莉 姚凯伦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第5期550-555,共6页
A kinetic Monte Carlo (kMC) simulation is conducted to study the growth of ultrathin film of Co on Cu(001) surface. The many-body, tight-binding potential model is used in the simulation to represent the interatom... A kinetic Monte Carlo (kMC) simulation is conducted to study the growth of ultrathin film of Co on Cu(001) surface. The many-body, tight-binding potential model is used in the simulation to represent the interatomic potential. The film morphology of heteroepitaxial Co film on a Cu(001) substrate at the transient and final state conditions with various incident energies is simulated. The Co covered area and the thickness of the film growth of the first two layers are investigated. The simulation results show that the incident energy influences the film growth and structure. There exists a transition energy where the interracial roughness is minimum. There are some void regions in the film in the final state, because of the influence of the island growth in the first few layers. In addition, there are deviations from ideal layer-by-layer growth at a coverage from 0 - 2 monolayers (ML). 展开更多
关键词 heteroepitaxial growth kinetic monte carlo growth mode film structure
下载PDF
The XPK Package:A Comparison between the Extended Phenomenological Kinetic(XPK) Method and the Conventional Kinetic Monte Carlo(KMC) Method
8
作者 Tong-hao Shen Xin Xu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第1期143-150,I0003,共9页
Recently, we proposed the extended phenomenological kinetics (XPK) method, which overcomes the notorious timescale separation difficulty between fast diffusion and slow chemical reactions in conventional kinetic Monte... Recently, we proposed the extended phenomenological kinetics (XPK) method, which overcomes the notorious timescale separation difficulty between fast diffusion and slow chemical reactions in conventional kinetic Monte Carlo (KMC) simulations. In the present work, we make a comprehensive comparison, based on the newly developed XPK package, between the XPK method and the conventional KMC method using a model hydrogenation reaction system. Two potential energy surfaces with different lateral interactions have been designed to illustrate the advantages of the XPK method in computational costs, parallel efficiency and the convergence behaviors to steady states. The XPK method is shown to be efficient and accurate, holding the great promise for theoretical modelling in heterogeneous catalysis, in particular, when the role of the lateral interactions among adsorbates is crucial. 展开更多
关键词 Kinetic monte carlo Extended phenomenological kinetics Surface reaction Heterogeneous catalysis
下载PDF
Quantitative Simulation Study of Metal Additive Manufacturing by Kinetic Monte Carlo
9
作者 Kepeng Ouyang Youdi Kuang 《Journal of Applied Mathematics and Physics》 2022年第5期1587-1601,共15页
Metal additive manufacturing (AM) is a disruptive manufacturing technology that takes into account the needs of complex structural forming and high-performance component forming. At present, the understanding of metal... Metal additive manufacturing (AM) is a disruptive manufacturing technology that takes into account the needs of complex structural forming and high-performance component forming. At present, the understanding of metal additive manufacturing simulation methods is not thorough enough, which restricts the development of metal additive manufacturing. Present work discusses the evolution of KMC method simulation results for simulating metal additive manufacturing at different length ratios and different scanning speeds. The results reveal that as the scanning speed increases, the main grains in the simulation results are transformed from coarse columnar grains to crescent-shaped grains, which are in good agreement with the existing experimental results. Besides, as the ratio of unit physical length to unit simulation length increases, the ratio of unit physical time to unit simulation time gradually decreases. 展开更多
关键词 Additive Manufacturing Kinetic monte carlo Simulation Grain Morphology
下载PDF
Coarse-graining Calcium Dynamics on Stochastic Reaction-diffusion Lattice Model 被引量:1
10
作者 申传胜 陈含爽 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期181-184,I0003,I0004,共6页
We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites tog... We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites together into CG cells and deriving CG reaction rates using local mean field approximation, we perform CG kinetic Monte Carlo (kMC) simulations and find the results of CG-kMC simulations are in excellent agreement with that of the microscopic ones. Strikingly, there is an appropriate range of coarse proportion rn, corresponding to the minimal deviation of the phase transition point compared to the microscopic one. For fixed m, the critical point increases monotonously as the system size increases, especially, there exists scaling law between the deviations of the phase transition point and the system size. Moreover, the CG approach provides significantly faster Monte Carlo simulations which are easy to implement and are directly related to the microscopics, so that one can study the system size effects at the cost of reasonable computational time. 展开更多
关键词 Calcium dynamics Kinetic monte carlo simulation Lattice model Coarse- vgrammg
下载PDF
Coarse-grained Simulations of Chemical Oscillation in Lattice Brusselator System
11
作者 饶汀 张珍 +1 位作者 侯中怀 辛厚文 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期425-433,I0003,I0004,共11页
The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are group... The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are grouped together to form a CG cell, upon which CG processes take place with well-defined CG rates. Such a CG approach almost fails if the CG rates are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of correlation among adjcent cells resulting fl'om the trimolecular reaction in this nonlinear system. By proper incorporating such boundary effects, thus introduce the so-cMled b-LMF CG approach. Extensive numerical simulations demonstrate that the b-LMF method can reproduce the oscillation behavior of the system quite well, given that the diffusion constant is not too small. In addition, the deviation from the KMC results reaches a nearly zero minimum level at an intermediate cell size, which lies in between the effective diffusion length and the minimal size required to sustain a well-defined temporal oscillation. 展开更多
关键词 Chemical oscillation COARSE-GRAINED Kinetic monte carlo
下载PDF
Molecular Simulations of Adsorption and Diffusion Behaviors of Benzene Molecules in NaY Zeolite 被引量:5
12
作者 张舟 刘辉 +3 位作者 朱吉钦 陈标华 田辉平 贺振富 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第4期618-624,共7页
In the article the Grand Canonical Monte Carlo (GCMC), molecular dynamics(MD), and kinetic Monte Carlo (KMC) simulations with particular focus on ascertaining the loading dependence of benzene diffusion in the z... In the article the Grand Canonical Monte Carlo (GCMC), molecular dynamics(MD), and kinetic Monte Carlo (KMC) simulations with particular focus on ascertaining the loading dependence of benzene diffusion in the zeolite were performed. First, a realistic representation of the structure of the sorbate-sorbent system was obtained based on GCMC simulation. The simulation clearly shows the characteristics of the adsorption sites of the benzene-NaY system, from which two kinds of preferably adsorbing sites for benzene molecules, called SⅡ and W sites, are identified. The structure thus obtained was then used as a basis for KMC and MD simulations. A compara-tive study by introducing and comparing two different mechanisms underlying jump diffusion in the zeolite of in-terest shows that the.MS diffusivity values predicted by the KMC and MD methods are fairly close to each other,leading to the conclusion that for benzene diffusion in NaY, the SⅡ→W→SⅡ jumps of benzene molecules are dominated,while the W→Wjumps do not exist in the process. These findings provide further support to our previous conclusion about the absence of the W→W jumps in the process of benzene diffusion in NaY. Finally, to relations, for predicting the self-and MS difthsivities were derived and found to be in fair agreement with the KMC and MD simulations. 展开更多
关键词 BENZENE ADSORPTION DIFFUSION NAY Grand Canonical monte carlo kinetic monte carlo
下载PDF
Simulation of multilayer homoepitaxial growth on Cu (100) surface 被引量:3
13
作者 吴锋民 陆杭军 吴自勤 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期807-812,共6页
The processes of multilayer thin Cu films grown on Cu (100) surfaces at elevated temperature (250-400K) are simulated by mean of kinetic Monte Carlo (KMC) method, where the realistic growth model and physical pa... The processes of multilayer thin Cu films grown on Cu (100) surfaces at elevated temperature (250-400K) are simulated by mean of kinetic Monte Carlo (KMC) method, where the realistic growth model and physical parameters are used. The effects of small island (dimer and trimer) diffusion, edge diffusion along the islands, exchange of the adatom with an atom in the existing island, as well as mass transport between interlayers are included in the simulation model. Emphasis is placed on revealing the influence of the Ehrlic-Schwoebel (ES) barrier on growth mode and morphology during multilayer thin film growth. We present numerical evidence that the ES barrier does exist for the Cu/Cu(100) system and an ES barrier EB 〉 0.125eV is estimated from a comparison of the KMC simulation with the realistic experimental images. The transitions of growth modes with growth conditions and the influence of exchange barrier on growth mode are also investigated. 展开更多
关键词 growth mode ES barrier multilayer growth kinetic monte carlo simulation
下载PDF
Crystal-KMC: Parallel Software for Lattice Dynamics Monte Carlo Simulation of Metal Materials 被引量:2
14
作者 Jianjiang Li Peng Wei +3 位作者 Shaofeng Yang Jie Wu Peng Liu Xinfu He 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第4期501-510,共10页
Kinetic Monte Carlo (KMC) is a widely used method for studying the evolution of materials at the microcosmic level. At present, while there are many simulation software programs based on this algorithm, most focus o... Kinetic Monte Carlo (KMC) is a widely used method for studying the evolution of materials at the microcosmic level. At present, while there are many simulation software programs based on this algorithm, most focus on the verification of a certain phenomenon and have no analog-scale requirement, so many are serial in nature. The dynamic Monte Carlo algorithm is implemented using a parallel framework called SPPARKS, but Jt does not support the Embedded Atom Method (EAM) potential, which is commonly used in the dynamic simulation of metal materials. Metal material - the preferred material for most containers and components -- plays an important role in many fields, including construction engineering and transportation. In this paper, we propose and describe the development of a parallel software program called CrystaI-KMC, which is specifically used to simulate the lattice dynamics of metallic materials. This software uses MPI to achieve a parallel multiprocessing mode, which avoid the limitations of serial software in the analog scale. Finally, we describe the use of the paralleI-KMC simulation software CrystaI-KMC in simulating the diffusion of vacancies in iron, and analyze the experimental results. In addition, we tested the performance of CrystaI-KMC in "meta -Era" supercomputing clusters, and the results show the CrystaI-KMC parallel software to have good parallel speedup and scalability. 展开更多
关键词 Kinetic monte carlo (KMC) communication optimization parallel computation Message PassingInterface (MPI)
原文传递
Broadening of Cr nanostructures in laser-focused atomic deposition 被引量:1
15
作者 卢向东 李同保 马艳 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期168-173,共6页
This paper presents the experimental progress of laser-focused Cr atomic deposition and the experimental condition. The result is an accurate array of lines with a periodicity of 212.8±0.2 nm and mean full-width ... This paper presents the experimental progress of laser-focused Cr atomic deposition and the experimental condition. The result is an accurate array of lines with a periodicity of 212.8±0.2 nm and mean full-width at half maximum as approximately 95 nm. Surface growth in laser-focused Cr atomic deposition is modeled and studied by kinetic Monte Carlo simulation including two events: the one is that atom trajectories in laser standing wave are simulated with the semiclassical equations of motion to obtain the deposition position; the other is that adatom diffuses by considering two major diffusion processes, namely, terrace diffusion and step-edge descending. Comparing with experimental results (Anderson W R, Bradley C C, McClelland J J and Celotta R J 1999 Phys. Rev. A 59 2476), it finds that the simulated trend of dependence on feature width is in agreement with the power of standing wave, the other two simulated trends are the same in the initial stage. These results demonstrate that some surface diffusion processes play important role in feature width broadening. Numerical result also shows that high incoming beam flux of atoms deposited redounds to decrease the distance between adatoms which can diffuse to minimize the feature width and enhance the contrast. 展开更多
关键词 atom optics laser-focused atomic deposition kinetic monte carlo simulation surface growth
下载PDF
Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO_4 被引量:1
16
作者 Youcheng Hu Xiaoxiao Wang +2 位作者 Peng Li Junxiang Chen Shengli Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第11期3297-3306,共10页
LiFePO_(4),one of the mainstream cathode materials of current EV batteries,exhibits experimental diffusion coefficients(D_(c))of Li^(+)which are not only several orders of magnitude lower than those predicted by the i... LiFePO_(4),one of the mainstream cathode materials of current EV batteries,exhibits experimental diffusion coefficients(D_(c))of Li^(+)which are not only several orders of magnitude lower than those predicted by the ionic hopping barriers obtained from theoretical calculations and spectroscopic measurements,but also span several orders from 10^(-14)to 10^(-18)cm^(2)s^(-1)under different states of charge(SOC)and the charging rates(C-rates).Atomic level understanding of such sluggishness and diversity of Li^(+)transport kinetics would be of significance in improving the rate performance of LiFePO_(4)through material and operation optimization but remain challenging.Herein,we show that the high sensitivity of Li^(+)hopping barriers on the local Li–Li coordination environments(numbers and configurations)plays a key role in the ion transport kinetics.This is due a neural network-based deep potential(DP)which allows accurate and efficient calculation of hopping barriers of Li^(+)in LiFePO_(4)with various Li–Li coordination environments,with which the kinetic Monte-Carlo(KMC)method was employed to determine the D_(c)values at various C-rates and SOC across a broad spectrum.Especially,an accelerated KMC simulation strategy is proposed to obtain the D_(c)values under a wide range of SOC at low C-rates,which agree well with that obtained from the galvanostatic intermittent titration technique(GITT).The present study provides accurate descriptions of Li^(+)transport kinetics at both very high and low C-rates,which remains challenging to experiments and first-principles calculations,respectively.Finally,it is revealed that the gradient distributions of Li^(+)density along the diffusion path result in great asymmetry in the barriers of the forward and backward hopping,causing very slow diffusion of Li^(+)and the diverse variation of D_(c). 展开更多
关键词 lithium iron phosphate diffusion coefficient machine-learning potential kinetic monte carlo simulations
原文传递
Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation
17
作者 徐昊 杨红 +7 位作者 王艳蓉 王文武 罗维春 祁路伟 李俊峰 赵超 陈大鹏 叶甜春 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期352-356,共5页
High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to ... High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection. 展开更多
关键词 high-k metal gate TDDB percolation theory kinetic monte carlo trap generation model
下载PDF
Lattice Mismatch Induced Tunable Dimensionality of Transition Metal Dichalcogenides
18
作者 Hanxiao Dong Huijun Jiang Zhonghuai Hou 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第6期853-859,I0001-I0004,I0072,共12页
Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is... Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is still unrevealed.Here,we establish a general kinetic Monte Carlo model for transition metal dichalcogenides(TMDs) growth to address such an issue.Our model is able to reproduce several key findings in experiments,and reveals that the dimensionality is determined by the lattice mismatch and the interaction strength between TMDs and the substrate.We predict that the dimensionality can be well tuned by the interaction strength and the geometry of the substrate.Our work deepens the understanding of tunable dimensionality of low-dimensional materials and may inspire new concepts for the design of such materials with expected dimensionality. 展开更多
关键词 Transition metal dichalcogenide Dimensionality Low-dimensional material Lattice mismatch Kinetic monte carlo simulation
下载PDF
Coverage Dependence of Growth Mode in Heteroepitaxy of Ni on Cu(100) Surface
19
作者 WU Feng-Min LU Hang-Jun FANG Yun-Zhang HUANG Shi-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期231-236,共6页
A realistic kinetic Monte Carlo (KMC) simulation model with physical parameters is developed, which well reproduces the heteroepitaxial growth of multilayered Ni thin film on Cu(100) surfaces at room temperature. ... A realistic kinetic Monte Carlo (KMC) simulation model with physical parameters is developed, which well reproduces the heteroepitaxial growth of multilayered Ni thin film on Cu(100) surfaces at room temperature. The effects of mass transport between interlayers and edge diffusion of atoms along the islands are included in the simulation model, and the surface roughness and the layer distribution versus total coverage are calculated. Speeially, the simulation model reveals the transition of growth mode with coverage and the difference between the Ni heteroepitaxy on Cu(100) and the Ni homoepitaxy on Ni(100). Through comparison of KMC simulation with the real scanning tunneling microscopy (STM) experiments, the Ehrlich-Schwoebel (ES) barrier Ees is estimated to be 0.18±0.02 eV for Ni/Cu(100) system while 0.28 eV for Ni/Ni(100). The simulation also shows that the growth mode depends strongly on the thickness of thin film and the surface temperature, and the critical thickness of growth mode transition is dependent on the growth condition such as surface temperature and deposition flux as well. 展开更多
关键词 heteroepitary growth mode ES barrier kinetic monte carlo simulation
下载PDF
Simulation of multilayer Cu/Pd(100) heteroepitaxial growth by pulse laser deposition
20
作者 吴锋民 陆杭军 +1 位作者 方允樟 黄仕华 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第10期3029-3035,共7页
The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The e... The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements, 展开更多
关键词 HETEROEPITAXY pulse laser deposition Ehrlich-Schwoebel (ES) barrier kinetic monte carlo simulation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部