期刊文献+
共找到488篇文章
< 1 2 25 >
每页显示 20 50 100
Pyrolysis and combustion kinetics of lycopodium particles in thermogravimetric analysis 被引量:1
1
作者 Seyed Alireza Mostafavi Sadjad Salavati +1 位作者 Hossein Beidaghy Dizaji Mehdi Bidabadi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3409-3417,共9页
Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion propertie... Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250-550 °C where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500-600 °C, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error. 展开更多
关键词 燃烧动力学 颗粒温度 热重分析 松子 可再生能源 热解 温度范围 反应动力学
下载PDF
Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed 被引量:1
2
作者 Heng Zheng Oday Daghagheleh +3 位作者 Thomas Wolfinger Bernd Taferner Johannes Schenk Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第10期1873-1881,共9页
The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magn... The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magnetite-based iron ore was pre-oxidized at 800 and1000℃ for a certain time to reach a partly oxidation and deeply oxidation state.The structure and morphology of the reduced particles were analyzed via optical microscope and scanning electron microscopy(SEM).The reaction kinetic mechanism was determined based on the double-logarithm analysis.The results indicate that the materials with higher oxidation temperature and wider particle size range show better fluidization behaviors.The lower oxidation temperature is more beneficial for the reduction rate,especially in the later reduction stage.The pre-oxidation degree shows no obvious influence on the fluidization and reduction behaviors.Based on the kinetic analysis,the reduction progress can be divided into three stages.The reduction mechanism was discussed combing the surface morphology and phase structure. 展开更多
关键词 magnetite-based iron ore prior oxidation fluidization behavior kinetic analysis hydrogen reduction
下载PDF
Quantitative kinetic analysis on oxygen reduction reaction:A perspective
3
作者 Juan Wang Chang-Xin Zhao +4 位作者 Jia-Ning Liu Ding Ren Bo-Quan Li Jia-Qi Huang Qiang Zhang 《Nano Materials Science》 CAS CSCD 2021年第3期313-318,共6页
Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperforma... Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis. 展开更多
关键词 Oxygen reduction reaction ELECTROCATALYSIS Quantitative kinetic analysis Koutecky–Levich equation Mass transfer
下载PDF
Influence of Size of Hematite Powder on Its Reduction Kinetics by H_2 at Low Temperature 被引量:3
4
作者 PANG Jian-ming GUO Pei-min ZHAO Pei CAO Chao-zhen ZHANG Dian-wei 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2009年第5期7-11,共5页
The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of... The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of powder decreases from 107. 5μm to 2. 0 μm, the surface area of the powder and the contact area between the powder and gas increase, which makes the reduction process of hematite accelerate by about 8 times, and the apparent activation energy of the reduction reaction drops to 36.9 kJ/mol from 78. 3 kJ/mol because the activity of ore powder is improved by refining gradually. With the same reaction rate, the reaction temperature of 6.5 μm powder decreases by about 80 ℃ compared with that of 107. 5 μm powder. Thinner diffusion layer can also accelerate the reaction owing to powder refining. The higher the temperature, the greater is the peak of the reduction rate; at the same temperature, the greater the particle size, the smaller is the peak value of the reduction rate; both inner diffusion and interface chemical reaction play an important role in the whole reaction process. 展开更多
关键词 iron oxide low temperature reduction kinetics thermogravimetric analysis (TGA) reduction mechanism
原文传递
Isothermal reduction of titanomagnetite concentrates containing coal 被引量:1
5
作者 Tu Hu Xue-wei Lü +1 位作者 Chen-guang Bai Gui-bao Qiu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第2期131-137,共7页
The isothermal reduction of the Panzhihua titanomagnetite concentrates (PTC) briquette containing coal under argon atmosphere was investigated by thermogravimetry in an electric resistance furnace within the tempera... The isothermal reduction of the Panzhihua titanomagnetite concentrates (PTC) briquette containing coal under argon atmosphere was investigated by thermogravimetry in an electric resistance furnace within the temperature range of 1250-1350°C. The samples reduced in argon at 1350°C for different time were examined by X-ray diffraction (XRD) analysis. Model-fitting and model-free methods were used to evaluate the apparent activation energy of the reduction reaction. It is found that the reduction rate is very fast at the early stage, and then, at a later stage, the reduction rate becomes slow and decreases gradually to the end of the reduction. It is also observed that the reduction of PTC by coal depends greatly on the temperature. At high temperatures, the reduction degree reaches high values faster and the final value achieved is higher than at low temperatures. The final phase composition of the reduced PTC-coal briquette consists in iron and fer-rous-pseudobrookite (FeTi2O5), while Fe2.75Ti0.25O4, Fe2.5Ti0.5O4, Fe2.25Ti0.75O4, ilmenite (FeTiO3) and wustite (FeO) are intermediate products. The reaction rate is controlled by the phase boundary reaction for reduction degree less than 0.2 with an apparent activation energy of about 68 kJ·mol-1 and by three-dimensional diffusion for reduction degree greater than 0.75 with an apparent activation energy of about 134 kJ·mol-1. For the reduction degree in the range of 0.2-0.75, the reaction rate is under mixed control, and the activation energy increases with the increase of the reduction degree. 展开更多
关键词 TITANOMAGNETITE carbothermal reduction thermogravimetric analysis kinetics
下载PDF
Thermal decomposition characteristics and kinetics of methyl linoleate under nitrogen and oxygen atmospheres
6
作者 Xue-Chun Wang Jian-Hua Fang +3 位作者 Bo-Shui Chen Jiu Wang Jiang Wu Di Xia 《Petroleum Science》 SCIE CAS CSCD 2015年第3期518-524,共7页
The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature... The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of ML at different heating rates were stud- ied. The results showed that the thermal decomposition characteristics of ML under nitrogen and oxygen atmo- spheres were macroscopically similar, although ML exhibited relatively lower thermal stability under an oxy- gen atmosphere than under a nitrogen atmosphere. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature, and the rate of maximum weight loss of ML under an oxygen atmosphere were much lower than those under a nitrogen atmosphere and increased with increasing heating rates under either oxygen or nitrogen atmosphere. In addition, the kinetic characteristics of thermal decomposition of ML were elucidated based on the experimental results and by the multiple linear regression method. The activation energy, pre-exponential factor, reaction order, and the kinetic equation for thermal decomposition of ML were obtained. The comparison of experimental and calculated data and the analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for pyrolysis of ML with relative errors of about 1%. Finally, the kinetic compensation effect between the pre-exponential factors and the activation energy in the pyrolysis of ML was also confirmed. 展开更多
关键词 Methyl linoleate Pyrolysis characteristics kinetics thermogravimetric analysis Biodiesel
下载PDF
Experimental Investigation on Hydrothermal Reduction of Sulfates to H<sub>2</sub>S and Organic Sulfides by Ethene
7
作者 Chao Han Kangle Ding +4 位作者 Yan Liu Fujia Guan Mei Zou Zhenzhen Yu Yi Wu 《Open Journal of Yangtze Oil and Gas》 2020年第4期188-199,共12页
The kinetic characteristics of alkenes involved in thermochemical sulfate reduction (TSR) have been never reported in geological literature. In this study, TSR by ethene under hydrothermal conditions was performed in ... The kinetic characteristics of alkenes involved in thermochemical sulfate reduction (TSR) have been never reported in geological literature. In this study, TSR by ethene under hydrothermal conditions was performed in the constrained simulation experiments. Typical TSR products consisted of H<sub>2</sub>S, CO<sub>2</sub>, mercaptans, sulfides, thiophenes derivatives and benzothiophene. The apparent activation energy <i>E</i> and apparent frequency factor <i>A</i> for TSR by ethene were determined as 76.370 kJ/mol and 4.579 s<sup>-1</sup>, respectively. The lower activation energy for ethene involved in TSR relative to ethane suggested that the reactivity of ethene is much higher than that of ethane, in accordance with the thermodynamic analysis. Rate constants were determined experimentally using first-order kinetics extrapolate to MgSO<sub>4</sub> half-lives of 67.329 years - 3.053 years in deep burial diagenetic settings (120°C - 180°C). These values demonstrate that the reaction rate for TSR by ethene is extraordinarily fast in high-temperature gas reservoirs (120°C - 180°C). Consequently, the newly formed ethene from thermal cracking and TSR alteration of natural gas and/or petroleum could not survive after TSR process and were rarely detected in natural TSR reservoirs. 展开更多
关键词 Thermochemical Sulfate reduction (TSR) ETHENE Simulation Experiments Thermodynamic analysis First-Order kinetics
下载PDF
Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices 被引量:9
8
作者 Arjun Singh Tirupati C.Sharma +3 位作者 Mahesh Kumar Jaspreet Kaur Narang Prateek Kishore Alok Srivastava 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期22-32,共11页
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly... This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition. 展开更多
关键词 Plastic bonded explosives thermogravimetric analysis Differential scanning calorimeter Thermal decomposition kinetics
下载PDF
Direct reduction of iron ore by biomass char 被引量:5
9
作者 Hai-bin Zuo Zheng-wen Hu +2 位作者 Jian-liang Zhang Jing Li Zheng-jian Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期514-521,共8页
By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivi... By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivity. The increase of carbon-to-oxygen mole ratio (C/O) can lead to the enhancement of reaction rate and reduction fraction, but cannot change the temperature and trend of each reaction. The reaction temperature of hematite reduced by biomass char is at least 100 K lower than that reduced by coal and coke, the maximum reaction rate is 1.57 times as high as that of coal, and the final reaction fraction is much higher. Model calculation indicates that the use of burden composed of biomass char and iron ore for blast furnaces can probably decrease the temperature of the thermal reserve zone and reduce the CO equilibrium concentration. 展开更多
关键词 IRONMAKING biomass char HEMATITE direct reduction process thermogravimetric analysis
下载PDF
Kinetics of magnetite oxidation under non-isothermal conditions 被引量:1
10
作者 Aref Sardari Eskandar Keshavarz Alamdari +1 位作者 Mohammad Noaparast Sied Ziaedin Shafaei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期486-492,共7页
Oxidation of magnetite concentrates, which occurs during the pellet induration process, must be deeply understood to enable the appropriate design of induration machines. In the present paper, the kinetics of the magn... Oxidation of magnetite concentrates, which occurs during the pellet induration process, must be deeply understood to enable the appropriate design of induration machines. In the present paper, the kinetics of the magnetite oxidation reaction was studied. Primary samples were obtained from the Gol-e-Gohar iron ore deposit. Magnetic separation and flotation decreased the sulfur content in the samples to be approximately 0.1wt%. Thermogravimetric analysis was used to measure mass changes during the oxidation of magnetite and, consequently, the conversion values. The aim of this study was to use isoconversional methods to calculate the kinetic parameters. The Coats-Redfern method was also used to obtain the activation energy. Thermogravimetric analyses were run at three different heating rates. The Coats-Redfern results were too ambiguous for a meaningful interpretation. In the case of the isoconversional method, however, the mean activation energy and pre-exponential factor of the oxidation reaction were obtained as 67.55 kJ and 15.32 × 10<sup>8</sup> min<sup>−1</sup>, respectively. Such a large activation energy implies that temperature strongly affects the reaction rate. The oxidation reaction exhibits a true multi-step nature that is predominantly controlled by chemical reaction and diffusion mechanisms. 展开更多
关键词 MAGNETITE kinetics OXIDATION thermogravimetric analysis
下载PDF
Thermal Decomposition and Kinetics of Rigid Polyurethane Foams Derived from Sugarcane Bagasse
11
作者 颜永斌 廖兵 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第5期776-780,共5页
Rigid polyurethane foams were fabricated with five kinds of liquefied sugarcane bagasse polyols (LBP). The foams derived from sugarcane bagasse were investigated by thermogravimetric analysis (TGA), and the therma... Rigid polyurethane foams were fabricated with five kinds of liquefied sugarcane bagasse polyols (LBP). The foams derived from sugarcane bagasse were investigated by thermogravimetric analysis (TGA), and the thermal degradation data were analyzed using the Coast-Redfern method and Ozawa method to obtain the reaction order and activation energy. The results indicate that the sugarcane bagasse-foams exhibit an excellent heat-resistant property, whereas their pyrolysis procedures are quite complicated. The reaction as first order only takes place from 250 to 400 ℃, and the pyrolysis activation energies vary from 20 to 140 kJ/mol during the whole pyrolysis process. 展开更多
关键词 rigid polyurethane foams thermal decomposition thermogravimetric analysis decomposition kinetics sugarcane bagasse
下载PDF
Kinetics and mechanism of coal-based direct reduction of highchromium vanadium-titanium magnetite
12
作者 Jian Yang Tao Jiang +2 位作者 Shi-hong Ma Song-tao Yang Mi Zhou 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2022年第11期1723-1733,共11页
High-chromium vanadium-titanium magnetite(HCVTM)is a valuable resource containing metal elements such as iron,vanadium,titanium,and chromium.To recycle these elements,direct reduction is an efficient way.The mechanism... High-chromium vanadium-titanium magnetite(HCVTM)is a valuable resource containing metal elements such as iron,vanadium,titanium,and chromium.To recycle these elements,direct reduction is an efficient way.The mechanism and reaction kinetic parameters for the direct reduction of HCVTM were studied.Experimental results show that the reduction degree increases obviously when the C/O ratio and temperature increase.Thermodynamic analysis showed a dramatic mass loss in the direct reduction of HCVTM in the temperature range of 985-1160℃.From 1200 to 1350℃,the reduction curves for the isothermal reduction of HCVTM followed the same trend,with a sharp increase in the initial reaction zone and a slight increase in the reduction rate with increasing time,and finally,the isothermal reduction process of HCVTM was divided into several limiting stages with varying degrees,with inconsistent limiting factors for the reaction rate at different stages.The results also show that the activation energy decreases slightly at larger degrees of reduction.Also,the apparent rate constant k(T)increased with increasing reduction temperature,with lnk(T)showing a good linear relationship with temperature. 展开更多
关键词 High-chromium vanadium-titanium magnetite Direct reduction reduction rate KINETIC Thermodynamic analysis
原文传递
Study on the Effect of Carboxyl Terminated Butadiene Acrylonitrile (CTBN) Copolymer Concentration on the Decomposition Kinetics Parameters of Blends of Glycidyl Epoxy and Non-Glycidyl Epoxy Resin
13
作者 Garima Tripathi Deepak Srivastava 《International Journal of Organic Chemistry》 2011年第3期105-112,共8页
The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo... The degradation of the epoxy system was studied for the prepared six blend samples with the incorporation of 0 wt% - 25 wt% carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, on a dynamic basis using Thermo gravimetric analysis (TGA) technique under a nitrogen atmosphere. The blends were prepared by physical mixing and were cured with diamine. The degradation of each sample followed second-order degradation kinetics, which was calculated by Coats-Redfern equation using best-fit analysis. This was further confirmed by linear regression analysis. The validity of data was checked by t-test statistical analysis. From this value of reaction order, activation energy (E), and pre-exponential factor (Z) were calculated. It was found that the activation energy increased with the addition of liquid elastomer. 展开更多
关键词 DIGLYCIDYL Ether of Bis-Phenol-A Cycloaliphatic EPOXY Resin CARBOXYL Terminated BUTADIENE Acrylonotrile (CTBN) COPOLYMER thermogravimetric analysis (TGA) Degradation kinetics
下载PDF
Non-isothermal Kinetics of Pyrolysis of Three Kinds of Fresh Biomass 被引量:10
14
作者 MIN Fan-fei ZHANG Ming-xu CHEN Qing-ru 《Journal of China University of Mining and Technology》 EI 2007年第1期105-111,共7页
The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic para... The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃. 展开更多
关键词 木材加工 热解工艺 木材化学 温度变化
下载PDF
Pyrolysis Characteristics and Kinetics of Methyl Oleate Based on TG-FTIR Method 被引量:3
15
作者 Wang Xuechun Fang Jianhua +2 位作者 Chen Boshui Wang Jiu Wu Jiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第2期17-25,共9页
The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmosphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10 ℃/min from room t... The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmosphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10 ℃/min from room temperature to 600 ℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identified by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2 O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the CoatsRedfern integral method and the multiple-linear regression method. The activation energy, the pre-exponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also confirmed. 展开更多
关键词 热解动力学模型 油酸甲酯 热解特性 IR方法 酯基 热分解特性 多元线性回归方法 TG-FTIR
下载PDF
Thermogravimetric Analysis of Coal Char Combustion Kinetics 被引量:4
16
作者 Guang-wei WANG Jian-liang ZHANG +2 位作者 Jiu-gang SHAO Hui SUN Hai-bin ZUO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第10期897-904,共8页
Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single he... Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single heat- ing rate (A), non-isothermal multiple heating rate (B), and isothermal test (C), were conducted to calculate the ki- netic parameters of combustion of coal char. The results show that the combustion characteristics of bituminous coal char is better than that of anthracite char, and both increase of heating rate and increase of combustion temperature can obviously improve combustion characteristics of coal char. Activation energies of coal char combustion calculated by different methods are different, with activation energies calculated by methods A, B and C in the range of 103.12-- 153.77, 93.87--119.26, and 46.48--76.68 kJ/mol, respectively. By using different methods, activation energy of anthracite char is always higher than that of bituminous coal char. In non-isothermal tests, with increase of combus- tion temperature, the combustion process changed from kinetic control to diffusion control. For isothermal combus- tion, the combustion process was kinetically controlled at temperature lower than 580 ℃ for bituminous coal char and at temperature lower than 630 ℃ for anthracite char. 展开更多
关键词 coal char COMBUSTION thermogravimetric analysis kinetics
原文传递
Non-isothermal kinetics and characteristics of calcium carbide nitridation reaction with calcium-based additives
17
作者 Zhihan Zhang Mengxiao Yu +2 位作者 Xiaoyu Zhang Jinli Zhang You Han 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第4期49-61,共13页
The nitridation reaction of calcium carbide and N_(2) at high temperatures is the key step in the production of lime-nitrogen.However,the challenges faced by this process,such as high energy consumption and poor produ... The nitridation reaction of calcium carbide and N_(2) at high temperatures is the key step in the production of lime-nitrogen.However,the challenges faced by this process,such as high energy consumption and poor product quality,are mainly attributed to the lack of profound understanding of the reaction.This study aimed to improve this process by investigating the non-isothermal kinetics and reaction characteristics of calcium carbide nitridation reaction at different heating rates(10,15,20,and 30℃·min^(-1))using thermogravimetric analysis.The kinetic equation for the nitridation reaction of additive-free calcium carbide sample was obtained by combining model-free methods and model-fitting method.The effect of different calcium-based additives(CaCl_(2) and CaF_(2))on the reaction was also investigated.The results showed that the calcium-based additives significantly reduced reaction temperature and activation energy E_(a) by about 40% with CaF_(2) and by 55%-60% with CaCl_(2).The reaction model f(α)was also changed from contracting volume(R3)to 3-D diffusion models with D3 for CaCl_(2) and D4 for CaF_(2).This study provides valuable information on the mechanism and kinetics of calcium carbide nitridation reaction and new insights into the improvement of the lime-nitrogen process using calcium-based additives. 展开更多
关键词 lime-nitrogen calcium carbide calciumbased additive thermogravimetric analysis nonisothermal kinetics
原文传递
Combustion Property and Kinetic Modeling of Pulverized Coal Based on Non-isothermal Thermogravimetric Analysis 被引量:1
18
作者 Jiu-gang SHAO Jian-liang ZHANG +2 位作者 Guang-wei WANG Zhe WANG Hong-wei GUO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第11期1002-1008,共7页
Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better ... Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ · mol^-1 for HL coal, respectively, while they are 114.5 and 147.6 kJ ·mol^-1 for RU coal, respectively. 展开更多
关键词 pulverized coal COMBUSTION kinetic model non-isothermal thermogravimetric analysis
原文传递
Synergistic reaction behavior of pyrolysis and reduction of briquette prepared by weakly caking coal and metallurgical dust
19
作者 Zheng-jian Liu Ming-hui Cao +4 位作者 Jian-liang Zhang Run-sheng Xu Yao-zu Wang Ji-yong Yu Yu-chen Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1367-1380,共14页
Co-carbonization of weakly caking coal and zinc-containing dust to prepare highly reactive ferro-coke and collaboratively recover zinc powder is one of the feasible ways for steel enterprises to recycle zinc-containin... Co-carbonization of weakly caking coal and zinc-containing dust to prepare highly reactive ferro-coke and collaboratively recover zinc powder is one of the feasible ways for steel enterprises to recycle zinc-containing dust.The pyrolysis mass loss behavior of adding blast furnace dust with different zinc contents to different ferro-coke materials was systematically studied by thermogravimetry and differential thermogravimetry analysis,and the kinetic mechanism of pyrolysis-reduction reaction of hybrid briquette was explored.The results of thermogravimetric curve analysis show that the addition of zinc oxide to the sample has no significant effect on the mass loss rate of the sample below 580℃,and the pyrolysis mass loss of zinc oxide mainly occurs between 800 and 1000℃.Kinetic analysis results show that the pyrolysis of zinc-containing samples is controlled by chemical reactions below 580℃.The reaction at 580–700℃ is controlled by the nucleation and growth model,and that above 700℃ is mainly controlled by diffusion.The results of X-ray diffraction analysis show that the pyrolysis process can effectively remove zinc oxide from ferro-coke. 展开更多
关键词 Zinc-containing dust Weakly caking coal Ferro-coke PYROLYSIS reduction Thermal reaction analysis Kinetic analysis
原文传递
Evaluating two stages of silicone-containing arylene resin oxidation via experiment and molecular simulation
20
作者 Jiangtao Cai Qingfu Huang +4 位作者 Huan Chen Tao Zhang Bo Niu Yayun Zhang Donghui Long 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期189-202,共14页
Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still... Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins. 展开更多
关键词 PSA resin Oxidative degradation thermogravimetric analysis DAEM reaction kinetics ReaxFF simulation
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部