In this article, a computational analysis has been performed on the structural properties and predominantly on the electronic properties of the α-CuSe (klockmannite) using density functional theory. The studies in ...In this article, a computational analysis has been performed on the structural properties and predominantly on the electronic properties of the α-CuSe (klockmannite) using density functional theory. The studies in this work show that the best structural results, in comparison to the experimental values, belong to the PBEsol-GGA and WC-GGA functionals. However, the best results for the bulk modulus and density of states (DOSs) are related to the local density approximation (LDA) functional. Through utilized approaches, the LDA is chosen to investigate the electronic structure. The results of the electronic properties and geometric optimization of α-CuSe respectively show that this compound is conductive and non-magnetic. The curvatures of the energy bands crossing the Fermi level explicitly reveal that major charge carriers in CuSe are holes, whose density is estimated to be 0.86×1022 hole/cm3. In particular, the Fermi surfaces in the first Brillouin zone demonstrate interplane conductivity between (001) planes. Moreover, the charge carriers among them are electrons and holes simultaneously. The conductivity in CuSe is mainly due to the hybridization between the d orbitals of Cu atoms and the p orbitals of Se atoms. The former orbitals have the dual nature of localization and itinerancy.展开更多
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef...Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.展开更多
The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters of...The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters ofβ-Si_(3)N_(4) were consistent with previous date.The cohesive energy and formation enthalpy show that initialβ-Si_(3)N_(4) has the highest structural stability.The calculated elastic constant and the Voigt-Reuss-Hill approximation indicate that elastic moduli ofβ-Si_(3)N_(4) are slightly reduced by M doping.Based on Poisson’s and Pugh’s ratio,β-Si_(3)N_(4) is a ductile material and the toughness ofβ-Si_(3)N_(4) increases with M doping,and Fe doping exhibited the best toughness.The results of density of states,charge distributions and overlapping populations indicate thatβ-Si_(3)N_(4) has the strong covalent and ionic bond strength between N and Si.展开更多
The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a...The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.展开更多
The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti b...The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures.展开更多
The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ...The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.展开更多
Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculate...Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heat of formation and cohesive energies showed that MgCu2 has the strongest alloying ability and structural stability. Elastic constants of MgCu2, Mg2 Ca and MgZn2 were calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio were derived. The calculated results show that MgCu2, Mg2 Ca and MgZn2 are all ductile phases. Among the three phases, MgCu2 has the strongest stiffness and the plasticity of MgZn2 phase is the best. Melting points of the three phases were predicted using cohesive energy and elastic constants. Density of states(DOS), Mulliken population, electron occupation number and charge density difference were discussed. Finally, Debye temperature was calculated and discussed.展开更多
Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculate...Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties.展开更多
To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate th...To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate the structural,elastic,and electronic properties of this alloy at different pressures.The results show that the calculated equilibrium lattice parameters are consistent with the experimental results,and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy differenceΔE and elastic constants increase with increasing pressure.The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa.At high pressure,the bulk modulus B shows larger values than the shear modulus G,and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa.Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure,which results in a decrease in the total density of states and a wider electron energy level.This factor is favorable for zero resistance.展开更多
The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnOl_xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (...The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnOl_xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B 1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1_xSex are evaluated in the range 0 〈 x 〈 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.展开更多
The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gr...The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gradient approximation. Among the five crystallographic structures that have been investigated, the cubic phase is found to be more stable than the hexagonal ones. A structural phase transition from ZB to WC in Moll, NaC1 to NiAs in TcH and NaCI to ZB to NiAs in RuH is also predicted under high pressure. The calculated elastic constants indicate that all the three hydrides are mechanically stable at ambient pressure.展开更多
The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al...The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.展开更多
The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as...The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.展开更多
First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are ...First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are in good agreement with the experimental and other theoretical values. The calculated formation enthalpies and cohesive energies show that Al2Ca has the strongest alloying ability, and Al4Sr has the highest structural stability. The densities of states (DOS), Mulliken electronic populations, and electronic charge density difference are obtained to reveal the underlying mechanism of structural stability. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are estimated from the calculated elastic constants. The mechanical properties of these phases are further analyzed and discussed. The Gibbs free energy and Debye temperature are also calculated and discussed.展开更多
The structural, elastic, electronic, and thermodynamic properties of thermoelectric material Mg Ag Sb in γ, β, α phases are studied with first-principles calculations based on density functional theory. The optimiz...The structural, elastic, electronic, and thermodynamic properties of thermoelectric material Mg Ag Sb in γ, β, α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states(TDOS) and partial density of states(PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s,Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature.展开更多
The structural, elastic, and electronic properties of the very recently discovered ternary silicide superconductor, Li2IrSi3, are calculated using an ab-initio technique. We adopt the plane-wave pseudopotential approa...The structural, elastic, and electronic properties of the very recently discovered ternary silicide superconductor, Li2IrSi3, are calculated using an ab-initio technique. We adopt the plane-wave pseudopotential approach within the frame- work of the first-principles density functional theory (DFT) implemented by the CASTEP code. The calculated structural parameters show reasonable agreement with the experimental results. The elastic moduli of this interesting material are calculated for the first time. The electronic band structure and electronic energy density of states indicate the strong cova- lent Ir-Si and Si-Si bonding, which leads to the formation of the rigid structure of Li2IrSi3. Strong covalency gives rise to a high Debye temperature in this system. We discuss the theoretical results in detail in this paper.展开更多
The structural, electronic, and elastic properties of cubic HC(NH2)2PbI3 perovskite are investigated by density functional theory using the Tkatchenko-Scheffler pairwise dispersion scheme. Our relaxed lattice parame...The structural, electronic, and elastic properties of cubic HC(NH2)2PbI3 perovskite are investigated by density functional theory using the Tkatchenko-Scheffler pairwise dispersion scheme. Our relaxed lattice parameters are in agreement with experimental data. The hydrogen bonding between NH2 and I ions is found to have a crucial role in FAPbI3 stability. The first calculated band structure shows that HC(NH2)2PbI3 has a direct bandgap (1.02 eV) at R-point, lower than the bandgap (1.53 eV) of CH3NH3PbI3. The calculated density of states reveals that the strong hybridization of s(Pb)-p(I) orbital in valence band maximum plays an important role in the structural stability. The photo-generated effective electron mass and hole mass at R-point along the R-Γ and R-M directions are estimated to be smaller:me^*=0.06m0 and mh^*=0.08m0 respectively, which are consistent with the values experimentally observed from long range photocarrier transport. The elastic properties are also investigated for the first time, which shows that HC(NH2)2PbI3 is mechanically stable and ductile and has weaker strength of the average chemical bond. This work sheds light on the understanding of applications of HC(NH2)2PbI3 as the perovskite in a planar-heterojunction solar cell light absorber fabricated on flexible polymer substrates.展开更多
The structural, electronic and optical properties of the monoclinic ZrO2 were studied by ab initio calculations based on the density functional theory and pseudopotential method. The calculated lattice parameters and ...The structural, electronic and optical properties of the monoclinic ZrO2 were studied by ab initio calculations based on the density functional theory and pseudopotential method. The calculated lattice parameters and band gap are in agreement with the experimental and other theoretical values. The evolution of lattice parameters and electronic properties were illustrated under high pressure. Meanwhile, the optical properties, such as adsorption coefficients, imaginary part of dielectric function, and energy loss function, were investigated under both ambient and high pressures.展开更多
基金performed based on research project number 2054361 in the University of Isfahan (UI), Isfahan, Iran
文摘In this article, a computational analysis has been performed on the structural properties and predominantly on the electronic properties of the α-CuSe (klockmannite) using density functional theory. The studies in this work show that the best structural results, in comparison to the experimental values, belong to the PBEsol-GGA and WC-GGA functionals. However, the best results for the bulk modulus and density of states (DOSs) are related to the local density approximation (LDA) functional. Through utilized approaches, the LDA is chosen to investigate the electronic structure. The results of the electronic properties and geometric optimization of α-CuSe respectively show that this compound is conductive and non-magnetic. The curvatures of the energy bands crossing the Fermi level explicitly reveal that major charge carriers in CuSe are holes, whose density is estimated to be 0.86×1022 hole/cm3. In particular, the Fermi surfaces in the first Brillouin zone demonstrate interplane conductivity between (001) planes. Moreover, the charge carriers among them are electrons and holes simultaneously. The conductivity in CuSe is mainly due to the hybridization between the d orbitals of Cu atoms and the p orbitals of Se atoms. The former orbitals have the dual nature of localization and itinerancy.
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
基金Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)the National Natural Science Foundation of China(Grant No.21703222)。
文摘Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.
文摘The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters ofβ-Si_(3)N_(4) were consistent with previous date.The cohesive energy and formation enthalpy show that initialβ-Si_(3)N_(4) has the highest structural stability.The calculated elastic constant and the Voigt-Reuss-Hill approximation indicate that elastic moduli ofβ-Si_(3)N_(4) are slightly reduced by M doping.Based on Poisson’s and Pugh’s ratio,β-Si_(3)N_(4) is a ductile material and the toughness ofβ-Si_(3)N_(4) increases with M doping,and Fe doping exhibited the best toughness.The results of density of states,charge distributions and overlapping populations indicate thatβ-Si_(3)N_(4) has the strong covalent and ionic bond strength between N and Si.
基金Projects(L2014051,LT2014004)supported by the Program for Scientific Technology Plan of the Educational Department of Liaoning Province,China
文摘The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.
基金International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)National Natural Science Foundation of China(Nos.51674226,51574207,51574206,51274175)+1 种基金International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)
文摘The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures.
基金Project(20131083) supported by the Doctoral Starting up Foundation of Liaoning Province,ClhinaProject(LT201304) supported by the Program for Liaoning Innovative Research Team in University,ChinaProject(2013201018) supported by the Key Technologies Research and Development Program of Liaoning Province,China
文摘The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.
基金Project(2013201018)supported by Scientific and Technological Project of Liaoning Province,China
文摘Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heat of formation and cohesive energies showed that MgCu2 has the strongest alloying ability and structural stability. Elastic constants of MgCu2, Mg2 Ca and MgZn2 were calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio were derived. The calculated results show that MgCu2, Mg2 Ca and MgZn2 are all ductile phases. Among the three phases, MgCu2 has the strongest stiffness and the plasticity of MgZn2 phase is the best. Melting points of the three phases were predicted using cohesive energy and elastic constants. Density of states(DOS), Mulliken population, electron occupation number and charge density difference were discussed. Finally, Debye temperature was calculated and discussed.
基金This work is supported by National Key Technology Research and Development Program of Ministry of Science and Technology of China(2011BAE22B00)Program for Liaoning Innovative Research Team in University.
文摘Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties.
基金the National Natural Science Foundation of China(No.51701128)the Scientific Research Project of Education Department of Liaoning Province,China(No.JYT19037).
文摘To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate the structural,elastic,and electronic properties of this alloy at different pressures.The results show that the calculated equilibrium lattice parameters are consistent with the experimental results,and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy differenceΔE and elastic constants increase with increasing pressure.The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa.At high pressure,the bulk modulus B shows larger values than the shear modulus G,and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa.Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure,which results in a decrease in the total density of states and a wider electron energy level.This factor is favorable for zero resistance.
文摘The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnOl_xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B 1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1_xSex are evaluated in the range 0 〈 x 〈 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.
文摘The structural, electronic and mechanical properties of transition metal hydrides (TMH, TM=Mo, Tc, Ru) are investigated by means of first principles calculation based on density fimctional theory with generalized gradient approximation. Among the five crystallographic structures that have been investigated, the cubic phase is found to be more stable than the hexagonal ones. A structural phase transition from ZB to WC in Moll, NaC1 to NiAs in TcH and NaCI to ZB to NiAs in RuH is also predicted under high pressure. The calculated elastic constants indicate that all the three hydrides are mechanically stable at ambient pressure.
基金Project (200805321032) supported by Doctoral Fund of Ministry of Education of ChinaProject (51071065) supported by the National Natural Science Foundation of ChinaProject (71075003) supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China
文摘The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.
基金Project(51021063)supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2011CB610401)supported by National Basic Research Program of ChinaProject(2014M552150)supported by Postdoctoral Science Foundation of China
文摘The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.
基金Funded by the National Natural Science Foundation of China(Nos.51204147,51274175)the International Cooperation Project Supported by Ministry of Science and Technology of China(No.2011DFA50520)the Postgraduate Excellent Innovation Project of Shanxi Province(No.20133105)
文摘First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are in good agreement with the experimental and other theoretical values. The calculated formation enthalpies and cohesive energies show that Al2Ca has the strongest alloying ability, and Al4Sr has the highest structural stability. The densities of states (DOS), Mulliken electronic populations, and electronic charge density difference are obtained to reveal the underlying mechanism of structural stability. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are estimated from the calculated elastic constants. The mechanical properties of these phases are further analyzed and discussed. The Gibbs free energy and Debye temperature are also calculated and discussed.
基金supported by the National Natural Science Foundation of China(Grant No.11504088)the Fund from Henan University of Technology,China(Grant Nos.2014YWQN08 and 2013JCYJ12)+2 种基金the Natural Science Fund from the Henan Provincial Education Department,China(Grant No.16A140027)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2013JQ1018 and 15JK1759)the Science Foundation of Northwest University of China(Grant No.14NW23)
文摘The structural, elastic, electronic, and thermodynamic properties of thermoelectric material Mg Ag Sb in γ, β, α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states(TDOS) and partial density of states(PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s,Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature.
文摘The structural, elastic, and electronic properties of the very recently discovered ternary silicide superconductor, Li2IrSi3, are calculated using an ab-initio technique. We adopt the plane-wave pseudopotential approach within the frame- work of the first-principles density functional theory (DFT) implemented by the CASTEP code. The calculated structural parameters show reasonable agreement with the experimental results. The elastic moduli of this interesting material are calculated for the first time. The electronic band structure and electronic energy density of states indicate the strong cova- lent Ir-Si and Si-Si bonding, which leads to the formation of the rigid structure of Li2IrSi3. Strong covalency gives rise to a high Debye temperature in this system. We discuss the theoretical results in detail in this paper.
基金supported by the National Natural Science Foundation of China(Grant No.51572219)the Natural Science Foundation of Shaanxi Province,China(Grant No.2015JM1018)+3 种基金the Graduate Innovation Fund of Northwest University of China(Grant No.YJG15007)the Henan Provincial Foundation and Frontier Technology Research Program,China(Grant Nos.2013JCYJ12 and 2013JCYJ13)the Fund from Henan University of Technology,China(Grant No.2014YWQN08)the Natural Science Fund from the Henan Provincial Education Department,China(Grant No.16A140027)
文摘The structural, electronic, and elastic properties of cubic HC(NH2)2PbI3 perovskite are investigated by density functional theory using the Tkatchenko-Scheffler pairwise dispersion scheme. Our relaxed lattice parameters are in agreement with experimental data. The hydrogen bonding between NH2 and I ions is found to have a crucial role in FAPbI3 stability. The first calculated band structure shows that HC(NH2)2PbI3 has a direct bandgap (1.02 eV) at R-point, lower than the bandgap (1.53 eV) of CH3NH3PbI3. The calculated density of states reveals that the strong hybridization of s(Pb)-p(I) orbital in valence band maximum plays an important role in the structural stability. The photo-generated effective electron mass and hole mass at R-point along the R-Γ and R-M directions are estimated to be smaller:me^*=0.06m0 and mh^*=0.08m0 respectively, which are consistent with the values experimentally observed from long range photocarrier transport. The elastic properties are also investigated for the first time, which shows that HC(NH2)2PbI3 is mechanically stable and ductile and has weaker strength of the average chemical bond. This work sheds light on the understanding of applications of HC(NH2)2PbI3 as the perovskite in a planar-heterojunction solar cell light absorber fabricated on flexible polymer substrates.
基金the fund for Distinguished Young Scholars of Hubei Province(2006ABB031)the Research Foundation for Outstanding Young Teachers,China University of Geosciences (Wuhan)
文摘The structural, electronic and optical properties of the monoclinic ZrO2 were studied by ab initio calculations based on the density functional theory and pseudopotential method. The calculated lattice parameters and band gap are in agreement with the experimental and other theoretical values. The evolution of lattice parameters and electronic properties were illustrated under high pressure. Meanwhile, the optical properties, such as adsorption coefficients, imaginary part of dielectric function, and energy loss function, were investigated under both ambient and high pressures.