To improve wind resistance capacity of cable-braced steel portal frames,a double-braced portal frame was proposed by adding two pre-stressed knee braces to a cable-braced portal frame. To study the reasonable range of...To improve wind resistance capacity of cable-braced steel portal frames,a double-braced portal frame was proposed by adding two pre-stressed knee braces to a cable-braced portal frame. To study the reasonable range of application and method of cable parameter determination for this novel structure,the influences of load condition, span, base constraint, and cable parameters on structural performance were investigated by using the finite element code SAP2000. The results show that pre-stressed knee braces can effectively resist both uplifted and lateral wind loads,so this cablestayed and knee-braced steel portal frame is suitable for large wind.When the vertical load is comparable with the wind load,this novel type of portal frames is suitable for a medium span( 21-48 m). The cables in the cable brace can be determined by structural vertical stiffness,and the cables in the knee brace can be designed as the same as those in the cable-stayed part for the reason that their cross sectional area has only a weak effect on the structure. If no cable fails,the pretension variation of the cable does not affect the stiffness of the portal frame. The cable in the cable brace,working together with the cables in the knee braces,can ease uneven distribution of internal force,and their pretensions can be determined according to actual engineering projects.展开更多
Objectives: We evaluated whether a valgus knee brace and an insole with subtalar strapping could reduce pain and improve functional scores over 12 months in patients with medial knee osteoarthritis (OA). Methods: OA w...Objectives: We evaluated whether a valgus knee brace and an insole with subtalar strapping could reduce pain and improve functional scores over 12 months in patients with medial knee osteoarthritis (OA). Methods: OA was confirmed by radiography in all patients, who were divided into three groups: exercise (n = 44), insole (n = 55), and brace (n = 19). Clinical knee functions and gait analyses were evaluated. Results: After 12 months, the clinical results for all groups had improved compared to pretreatment findings. Although the knee varus moment decreased and the gait speed increased when the insole was worn initially, the effects of the insole decreased at 6 and 12 months. In contrast, the knee varus moment decreased and the gait speed increased when the brace was initially fitted. The effects of the brace were maintained during the 12 months. Conclusions: The insole was effective for patients with Kellgren-Lawrence Grades II and III, and the knee brace was effective for patients with Grades III and IV conditions. Furthermore, the knee brace was more effective when worn for more than 6 months, while the effects of the insoles were not continuous.展开更多
The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. As the structural fuse of the frame, the knee element will yield first during a s...The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. As the structural fuse of the frame, the knee element will yield first during a severe earthquake so that no damage occurs to the major structural members and the rehabilitation is easy and economical. To help fully understand the relations be- tween its seismic performance and the structural parameters, systematic elastoplastic analysis of the KBF structure with finite element method was conducted in this work. Finally, general design recommendations were made according to the results of the analysis.展开更多
This study aimed to investigate a novel slender buckling-restrained knee brace damper (BRKB) for welded and weld-free steel framing systems. The proposed BRKB adopts steel bar cores connected by a central coupler and ...This study aimed to investigate a novel slender buckling-restrained knee brace damper (BRKB) for welded and weld-free steel framing systems. The proposed BRKB adopts steel bar cores connected by a central coupler and restrained by tube buckling restrainers with a cover tube supporter. The advantages of the proposed damper include easy assembly compared to conventional buckling restrained braces, and high architectural flexibility for the retrofitting of large-span weld-free or welded steel moment-resisting systems. Specifically, by increasing the number of contraction allowances, undesirable failure mechanisms that are global instability and local buckling of the restrainer ends can be effectively suppressed because the more uniform plastic deformation of the core bar can be achieved longitudinally. In this study, displacement-controlled compression and cyclic loading tests were carried out to investigate the deformation capacities of the proposed BRKBs. Structural performance metrics associated with both loading tests, such as strength capacities, strains at the cover tubes and buckling restrainers, and hysteretic behaviors of the proposed damper under cyclic loads, were measured and discussed. Test results revealed that the geometrical characteristics of the cover tubes and adopted contraction allowances at the dampers play essential roles in their load-bearing capacities.展开更多
基金Fund of Jiangsu Province Key Laboratory of Structure Engineering,China(No.ZD1302)
文摘To improve wind resistance capacity of cable-braced steel portal frames,a double-braced portal frame was proposed by adding two pre-stressed knee braces to a cable-braced portal frame. To study the reasonable range of application and method of cable parameter determination for this novel structure,the influences of load condition, span, base constraint, and cable parameters on structural performance were investigated by using the finite element code SAP2000. The results show that pre-stressed knee braces can effectively resist both uplifted and lateral wind loads,so this cablestayed and knee-braced steel portal frame is suitable for large wind.When the vertical load is comparable with the wind load,this novel type of portal frames is suitable for a medium span( 21-48 m). The cables in the cable brace can be determined by structural vertical stiffness,and the cables in the knee brace can be designed as the same as those in the cable-stayed part for the reason that their cross sectional area has only a weak effect on the structure. If no cable fails,the pretension variation of the cable does not affect the stiffness of the portal frame. The cable in the cable brace,working together with the cables in the knee braces,can ease uneven distribution of internal force,and their pretensions can be determined according to actual engineering projects.
文摘Objectives: We evaluated whether a valgus knee brace and an insole with subtalar strapping could reduce pain and improve functional scores over 12 months in patients with medial knee osteoarthritis (OA). Methods: OA was confirmed by radiography in all patients, who were divided into three groups: exercise (n = 44), insole (n = 55), and brace (n = 19). Clinical knee functions and gait analyses were evaluated. Results: After 12 months, the clinical results for all groups had improved compared to pretreatment findings. Although the knee varus moment decreased and the gait speed increased when the insole was worn initially, the effects of the insole decreased at 6 and 12 months. In contrast, the knee varus moment decreased and the gait speed increased when the brace was initially fitted. The effects of the brace were maintained during the 12 months. Conclusions: The insole was effective for patients with Kellgren-Lawrence Grades II and III, and the knee brace was effective for patients with Grades III and IV conditions. Furthermore, the knee brace was more effective when worn for more than 6 months, while the effects of the insoles were not continuous.
基金Project (No. 2002CB412790) supported by the National BasicResearch Program (973) of China
文摘The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. As the structural fuse of the frame, the knee element will yield first during a severe earthquake so that no damage occurs to the major structural members and the rehabilitation is easy and economical. To help fully understand the relations be- tween its seismic performance and the structural parameters, systematic elastoplastic analysis of the KBF structure with finite element method was conducted in this work. Finally, general design recommendations were made according to the results of the analysis.
基金supported in part by JSPS KAKENHI(NO.JP19K04711)the Mongolia−Japan Higher Engineering Education Development Project(MJEED)(Joint Research Code J16D22).
文摘This study aimed to investigate a novel slender buckling-restrained knee brace damper (BRKB) for welded and weld-free steel framing systems. The proposed BRKB adopts steel bar cores connected by a central coupler and restrained by tube buckling restrainers with a cover tube supporter. The advantages of the proposed damper include easy assembly compared to conventional buckling restrained braces, and high architectural flexibility for the retrofitting of large-span weld-free or welded steel moment-resisting systems. Specifically, by increasing the number of contraction allowances, undesirable failure mechanisms that are global instability and local buckling of the restrainer ends can be effectively suppressed because the more uniform plastic deformation of the core bar can be achieved longitudinally. In this study, displacement-controlled compression and cyclic loading tests were carried out to investigate the deformation capacities of the proposed BRKBs. Structural performance metrics associated with both loading tests, such as strength capacities, strains at the cover tubes and buckling restrainers, and hysteretic behaviors of the proposed damper under cyclic loads, were measured and discussed. Test results revealed that the geometrical characteristics of the cover tubes and adopted contraction allowances at the dampers play essential roles in their load-bearing capacities.