Purpose:The purpose of this study was to compare knee biomechanics of the replaced limb to the non-replaced limb of total knee replacement(TKR)patients and healthy controls during walking on level ground and on declin...Purpose:The purpose of this study was to compare knee biomechanics of the replaced limb to the non-replaced limb of total knee replacement(TKR)patients and healthy controls during walking on level ground and on decline surfaces of 5°,10°,and 15°.Methods:Twenty-five TKR patients and 10 healthy controls performed 5 walking trials on different decline slopes on a force platform and an instrumented ramp system.Two analyses of variance,2×2(limb×group)and 2×4(limb×decline slope),were used to examine selected biomechanics variables.Results:The replaced limb of TKR patients had lower peak loading-response and push-off knee extension moment than the non-replaced and the matched limb of healthy controls.No differences were found in loading-response and push-off knee internal abduction moments among replaced,non-replaced,and matched limb of healthy controls.The knee flexion range of motion,peak loading-response vertical ground reaction force,and peak knee extension moment increased across all slope comparisons between 0°and 15°in both the replaced and non-replaced limb of TKR patients.Conclusion:Downhill walking may not be appropriate to include in early stage rehabilitation exercise protocols for TKR patients.展开更多
This study relates the gait asymmetry, residual limb comfort, and energy cost during walking and identifies a compensating pattern for the trans-tibial amputees when the prostheses are misaligned. One male subject wit...This study relates the gait asymmetry, residual limb comfort, and energy cost during walking and identifies a compensating pattern for the trans-tibial amputees when the prostheses are misaligned. One male subject with a trans-tibial amputation volunteered for the study. The knee joint moments at the prosthetic side, the phase symmetry index, and the interface pressures were discussed under three sagittal alignment settings. The results show that the subject changes the knee joint moment, gait symmetry, and interface pressure with a misaligned prosthesis to improve his comfort and movement during walking. A high-quality liner reduces the gait sensitivity to misalignment and enhances the amputee's ability to compensate for misalignment. Since different people have different compensation patterns, more cases will be studied in future work.展开更多
文摘Purpose:The purpose of this study was to compare knee biomechanics of the replaced limb to the non-replaced limb of total knee replacement(TKR)patients and healthy controls during walking on level ground and on decline surfaces of 5°,10°,and 15°.Methods:Twenty-five TKR patients and 10 healthy controls performed 5 walking trials on different decline slopes on a force platform and an instrumented ramp system.Two analyses of variance,2×2(limb×group)and 2×4(limb×decline slope),were used to examine selected biomechanics variables.Results:The replaced limb of TKR patients had lower peak loading-response and push-off knee extension moment than the non-replaced and the matched limb of healthy controls.No differences were found in loading-response and push-off knee internal abduction moments among replaced,non-replaced,and matched limb of healthy controls.The knee flexion range of motion,peak loading-response vertical ground reaction force,and peak knee extension moment increased across all slope comparisons between 0°and 15°in both the replaced and non-replaced limb of TKR patients.Conclusion:Downhill walking may not be appropriate to include in early stage rehabilitation exercise protocols for TKR patients.
基金the National Natural Science Foundation of China (No. 50305013)
文摘This study relates the gait asymmetry, residual limb comfort, and energy cost during walking and identifies a compensating pattern for the trans-tibial amputees when the prostheses are misaligned. One male subject with a trans-tibial amputation volunteered for the study. The knee joint moments at the prosthetic side, the phase symmetry index, and the interface pressures were discussed under three sagittal alignment settings. The results show that the subject changes the knee joint moment, gait symmetry, and interface pressure with a misaligned prosthesis to improve his comfort and movement during walking. A high-quality liner reduces the gait sensitivity to misalignment and enhances the amputee's ability to compensate for misalignment. Since different people have different compensation patterns, more cases will be studied in future work.