This paper was to develop a weft-knitted stent coated by a drng-loaded electro-spun fibrous membrane and then investigate its morphology, mechan/cal properties and in vitro drug release property. This work was started...This paper was to develop a weft-knitted stent coated by a drng-loaded electro-spun fibrous membrane and then investigate its morphology, mechan/cal properties and in vitro drug release property. This work was started by weft-knitting of an inner layer of such stent using polydioxanone (PDO) and silkf'dment. Subsequently, 5-fluorouracil (5-FU) and curcnmin(CUR) loaded silk fibroin (SF) membranes were coated on the surface of the weft- knitted stent using electro-spinning technique to endow the drug delivery funct/on of the stent. The results show that the radial compression strength and c/renmferentlal expanding strength can reach above (9.1±0.4) cN/cm2 and (205.0± 0.2) cN/mm, respectively. The drug releasing behaviors can be sustained for 400 h. It is concluded that the stents have potential application as anintestinal stent in the future.展开更多
Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course...Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens.展开更多
Several different kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/polyester composite laminates. Flexural tests were carried out to examine stress- deflection process and...Several different kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/polyester composite laminates. Flexural tests were carried out to examine stress- deflection process and compare the mechanical properties in course and wale directions of these composites. The experimental results indicate that the numbers of load-bearing yarn in course and wale direction and the fabric density are the main factors influencing the ultimate tensile strength and initial elastic modulus of specimens.展开更多
The work investigated surface and mechanical properties of untreated and treated three-layered weftknitted spacer fabrics.In order to optimize the mechanical properties of weft-knitted spacer fabrics,silica aerogels(S...The work investigated surface and mechanical properties of untreated and treated three-layered weftknitted spacer fabrics.In order to optimize the mechanical properties of weft-knitted spacer fabrics,silica aerogels(SAs)coating was employed.Scanning electron microscopy(SEM)images of untreated and treated spacer fabrics were analyzed to ensure the presence of SAs on the coated spacer fabrics.The basic properties of uncoated and coated weftknitted spacer fabrics were studied and compared.Tensile strength and initial modulus were studied according to the GB/T3923 test standard YG026 MB-250 by testing machine.Moreover,compression properties of spacer fabrics were also tested by HD026 G test instrument.In this testing,work of compression,the linearity of compression,recovery work of compression and other parameters were calculated from stress and strain curves.It was found that SAs coating has a significant influence on the mechanical properties of weftknitted spacer fabrics.The statistical analysis also verified the significant performance(P value smaller than 0.05)of treated fabric samples at the 0.05 level.展开更多
基金National Natural Science Foundation of China(No.51603140)Natural Science Foundation of Jiangsu Province,China(No.BK20150372)+2 种基金University Science Research Project of Jiangsu Province,China(No.16KJB540003)Key Industry Technology Innovation,Science and Technology Project of Suzhou,China(No.SYG201638)Sino-Germany Joint Project,China(No.GZ1094)
文摘This paper was to develop a weft-knitted stent coated by a drng-loaded electro-spun fibrous membrane and then investigate its morphology, mechan/cal properties and in vitro drug release property. This work was started by weft-knitting of an inner layer of such stent using polydioxanone (PDO) and silkf'dment. Subsequently, 5-fluorouracil (5-FU) and curcnmin(CUR) loaded silk fibroin (SF) membranes were coated on the surface of the weft- knitted stent using electro-spinning technique to endow the drug delivery funct/on of the stent. The results show that the radial compression strength and c/renmferentlal expanding strength can reach above (9.1±0.4) cN/cm2 and (205.0± 0.2) cN/mm, respectively. The drug releasing behaviors can be sustained for 400 h. It is concluded that the stents have potential application as anintestinal stent in the future.
文摘Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens.
文摘Several different kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/polyester composite laminates. Flexural tests were carried out to examine stress- deflection process and compare the mechanical properties in course and wale directions of these composites. The experimental results indicate that the numbers of load-bearing yarn in course and wale direction and the fabric density are the main factors influencing the ultimate tensile strength and initial elastic modulus of specimens.
文摘The work investigated surface and mechanical properties of untreated and treated three-layered weftknitted spacer fabrics.In order to optimize the mechanical properties of weft-knitted spacer fabrics,silica aerogels(SAs)coating was employed.Scanning electron microscopy(SEM)images of untreated and treated spacer fabrics were analyzed to ensure the presence of SAs on the coated spacer fabrics.The basic properties of uncoated and coated weftknitted spacer fabrics were studied and compared.Tensile strength and initial modulus were studied according to the GB/T3923 test standard YG026 MB-250 by testing machine.Moreover,compression properties of spacer fabrics were also tested by HD026 G test instrument.In this testing,work of compression,the linearity of compression,recovery work of compression and other parameters were calculated from stress and strain curves.It was found that SAs coating has a significant influence on the mechanical properties of weftknitted spacer fabrics.The statistical analysis also verified the significant performance(P value smaller than 0.05)of treated fabric samples at the 0.05 level.