A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ...A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.展开更多
A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge...A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.展开更多
A fault diagnosis method of knowledge based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge based system, w...A fault diagnosis method of knowledge based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge based system, where fault detection heuristic rules have been generated from deep and shallow knowledge of the process. The fuzzy neural network performs the fault diagnosis task. This method does not need practical mathematical models of objects, so it is a strong implement for complex process.展开更多
As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include ...As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new Continual Learning Fault Diagnosis method(CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed Dual-branch Adaptive Aggregation Residual Network(DAARN).Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.展开更多
It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be...It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.展开更多
Based on the analysis of fault diagnosis knowledge of letter sorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fu...Based on the analysis of fault diagnosis knowledge of letter sorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fuzzy knowledge. Then their presenting and implementing form in fault diagnosis expert system is discussed and studied. It is proved that the expert system has good feasibility in the field of the diagnosis of letter sorting machine.展开更多
With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with w...With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with weighted average method. Meanwhile, this method has the ability of self learning and self adaptation in order to adapt both the complexity of vibrations produced practically and the pluralistic potent of vibration symptoms induced really for large rotating machinery, especially for turbogenerators. The reliability and precision of diagnosis with this method is heightened. It seems that the method can take more practical value in engineering applications.展开更多
This paper presented a new graph theoretic construct——fuzzy metagraphs and discussed their applications in constructing fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy element...This paper presented a new graph theoretic construct——fuzzy metagraphs and discussed their applications in constructing fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy elements but not single fuzzy element and offer some distinct advantages both for visualization of systems, as well as for formal analysis of system structure. In rule based system, a fuzzy metagraph is a unity of the knowledge base and the reasoning engine. Based on the closure of the adjacency matrix of fuzzy metagraphs, this paper presented an optimized inferential mechanism working mainly by an off line approach. It can greatly increase the efficiency of inference. Finally, it was applied in a daignostic expert system and satisfactory results were obtained.展开更多
基金Project supported by the National Major Science and Technology Foundation of China during the 10th Five-Year Plan Period(No.2001BA204B05-KHK Z0009)
文摘A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.
文摘A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.
文摘A fault diagnosis method of knowledge based fuzzy neural network is proposed for complex process, which is hard to develop practical mathematical model. Fault detection is performed through a knowledge based system, where fault detection heuristic rules have been generated from deep and shallow knowledge of the process. The fuzzy neural network performs the fault diagnosis task. This method does not need practical mathematical models of objects, so it is a strong implement for complex process.
基金supported by the National Natural Science Foundation of China(Nos.52272440,51875375)the China Postdoctoral Science Foundation Funded Project(No.2021M701503).
文摘As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments. Therefore, adequately collecting fault data in advance is difficult. Limited by the characteristics of DL, training existing models directly with new fault data of new submachines leads to catastrophic forgetting of old tasks, while the cost of collecting all known data to retrain the models is excessively high. DL-based fault diagnosis methods cannot learn continually and adaptively in dynamic environments. A new Continual Learning Fault Diagnosis method(CLFD) is proposed in this paper to solve a series of fault diagnosis tasks with machine increments. The stability–plasticity dilemma is an intrinsic issue in continual learning. The core of CLFD is the proposed Dual-branch Adaptive Aggregation Residual Network(DAARN).Two types of residual blocks are created in each block layer of DAARN: steady and dynamic blocks. The stability–plasticity dilemma is solved by assigning them with adaptive aggregation weights to balance stability and plasticity, and a bi-level optimization program is used to optimize adaptive aggregation weights and model parameters. In addition, a feature-level knowledge distillation loss function is proposed to further overcome catastrophic forgetting. CLFD is then applied to the fault diagnosis case with machine increments. Results demonstrate that CLFD outperforms other continual learning methods and has satisfactory robustness.
基金supported by the National Natural Science Foundation of China(No.61833016)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team,China(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038)。
文摘It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.
文摘Based on the analysis of fault diagnosis knowledge of letter sorting machine, this paper proposes a processing method by which the fault diagnosis knowledge is divided into exact knowledge, inadequate knowledge and fuzzy knowledge. Then their presenting and implementing form in fault diagnosis expert system is discussed and studied. It is proved that the expert system has good feasibility in the field of the diagnosis of letter sorting machine.
文摘With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with weighted average method. Meanwhile, this method has the ability of self learning and self adaptation in order to adapt both the complexity of vibrations produced practically and the pluralistic potent of vibration symptoms induced really for large rotating machinery, especially for turbogenerators. The reliability and precision of diagnosis with this method is heightened. It seems that the method can take more practical value in engineering applications.
文摘This paper presented a new graph theoretic construct——fuzzy metagraphs and discussed their applications in constructing fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy elements but not single fuzzy element and offer some distinct advantages both for visualization of systems, as well as for formal analysis of system structure. In rule based system, a fuzzy metagraph is a unity of the knowledge base and the reasoning engine. Based on the closure of the adjacency matrix of fuzzy metagraphs, this paper presented an optimized inferential mechanism working mainly by an off line approach. It can greatly increase the efficiency of inference. Finally, it was applied in a daignostic expert system and satisfactory results were obtained.