期刊文献+
共找到1,685篇文章
< 1 2 85 >
每页显示 20 50 100
Identification of partial differential equations from noisy data with integrated knowledge discovery and embedding using evolutionary neural networks
1
作者 Hanyu Zhou Haochen Li Yaomin Zhao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期90-97,共8页
Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extr... Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels. 展开更多
关键词 PDE discovery Gene Expression Programming Deep Learning knowledge embedding
下载PDF
A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme
2
作者 Nianyin Zeng Xinyu Li +2 位作者 Peishu Wu Han Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期487-501,共15页
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati... Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation. 展开更多
关键词 Attention mechanism knowledge distillation(kd) object detection tensor decomposition(TD) unmanned aerial vehicles(UAVs)
下载PDF
ESKD-A New Structure of Expert System Based on Knowledge Discovery
3
作者 Bingru Yang Fasheng liu Jiangtao Shen Information Engineering School, University of Science and Technology Beijing, Beijing, 100083, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第1期63-71,共9页
A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and know... A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and knowledge base) cooperating mechanism. With all new features, ESKD may form a new research direction and provide a great probability for solving the wealth of knowledge in the knowledge base. The general structural frame of ESKD and some sub-systems among ESKD have been described, and the dynamic knowledge base based on double-base cooperating mechanism has been emphased on. According to the result of demonstrative experi- ment, the structure of ESKD is effective and feasible. 展开更多
关键词 knowledge discovery expert system dynamic knowledge base double-base cooperating mechanism
下载PDF
CALL FOR PAPERS Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06)
4
《复杂系统与复杂性科学》 EI CSCD 2005年第1期84-86,共3页
Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as... Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as the study of the development and use of advanced information technologies and systems for national and international security-related applications. The First and Second Symposiums on ISI were held in Tucson,Arizona,in 2003 and 2004,respectively. In 2005,the IEEE International Conference on ISI was held in Atlanta,Georgia. These ISI conferences have brought together academic researchers,law enforcement and intelligence experts,information technology consultant and practitioners to discuss their research and practice related to various ISI topics including ISI data management,data and text mining for ISI applications,terrorism informatics,deception detection,terrorist and criminal social network analysis,crime analysis,monitoring and surveillance,policy studies and evaluation,information assurance,among others. We continue this stream of ISI conferences by organizing the Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06). WISI’06 will provide a stimulating forum for ISI researchers in Pacific Asia and other regions of the world to exchange ideas and report research progress. The workshop also welcomes contributions dealing with ISI challenges specific to the Pacific Asian region. 展开更多
关键词 SECURITY in conjunction with the Pacific Asia Conference on knowledge discovery and Data Mining CALL FOR PAPERS Workshop on Intelligence and Security Informatics ASIA
下载PDF
Knowledge discovery method for feature-decision level fusion of multiple classifiers 被引量:1
5
作者 孙亮 韩崇昭 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期222-227,共6页
To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur... To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV). 展开更多
关键词 multiple classifier fusion knowledge discovery Dempster-Shafer theory generalized rough set HYPERSPECTRAL
下载PDF
Knowledge Discovery in Maintenance Record of FMS Equipment for Diagnosing
6
作者 朱小燕 侯立华 唐水源 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期55-60,共6页
To discover the knowledge of fault diagnosis in maintenance record of flexible manufacture system(FMS) equipment. An algorithm (process) was presented, which consists of ① preparatory phase in which some items in mai... To discover the knowledge of fault diagnosis in maintenance record of flexible manufacture system(FMS) equipment. An algorithm (process) was presented, which consists of ① preparatory phase in which some items in maintenance record are selected and decomposed into associated concepts and attributes, and ② discovering and establishing process, in which some possible relationships between the concepts and attributes can be established and knowledge is formulated. The rich diagnosis knowledge in maintenance record was captured through applying the method. An application of the method to the diagnosis system for FMS equipment showed that the approach is correct and effective. 展开更多
关键词 knowledge discovery flexible manufacture system(FMS) fault diagnosis main tenance record
下载PDF
A new knowledge discovery method for scientific and technologic database 被引量:3
7
作者 DezhengZhang LianyingSun 《Journal of University of Science and Technology Beijing》 CSCD 2002年第3期237-240,共4页
A new algorithm for the knowledge discovery based on statistic inductionlogic is proposed, and the validity of the methods is verified by examples. The method is suitablefor a large range of knowledge discovery applic... A new algorithm for the knowledge discovery based on statistic inductionlogic is proposed, and the validity of the methods is verified by examples. The method is suitablefor a large range of knowledge discovery applications in the studying of causal relation,uncertainty knowledge acquisition and principal factors analyzing. The language filed description ofthe state space makes the algorithm robust in the adaptation with easier understandable results,which are isomotopy with natural language in the topologic space. 展开更多
关键词 knowledge discovery statistic induction fuzzy language field
下载PDF
Predicate Oriented Pattern Analysis for Biomedical Knowledge Discovery 被引量:2
8
作者 Feichen Shen Hongfang Liu +2 位作者 Sunghwan Sohn David W. Larson Yugyung Lee 《Intelligent Information Management》 2016年第3期66-85,共20页
In the current biomedical data movement, numerous efforts have been made to convert and normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to semi-structured data (e.g., RDF... In the current biomedical data movement, numerous efforts have been made to convert and normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to semi-structured data (e.g., RDF, OWL). With the increasing number of semi-structured data coming into the biomedical community, data integration and knowledge discovery from heterogeneous domains become important research problem. In the application level, detection of related concepts among medical ontologies is an important goal of life science research. It is more crucial to figure out how different concepts are related within a single ontology or across multiple ontologies by analysing predicates in different knowledge bases. However, the world today is one of information explosion, and it is extremely difficult for biomedical researchers to find existing or potential predicates to perform linking among cross domain concepts without any support from schema pattern analysis. Therefore, there is a need for a mechanism to do predicate oriented pattern analysis to partition heterogeneous ontologies into closer small topics and do query generation to discover cross domain knowledge from each topic. In this paper, we present such a model that predicates oriented pattern analysis based on their close relationship and generates a similarity matrix. Based on this similarity matrix, we apply an innovated unsupervised learning algorithm to partition large data sets into smaller and closer topics and generate meaningful queries to fully discover knowledge over a set of interlinked data sources. We have implemented a prototype system named BmQGen and evaluate the proposed model with colorectal surgical cohort from the Mayo Clinic. 展开更多
关键词 Biomedical knowledge discovery Pattern Analysis PREDICATE Query Generation
下载PDF
The 1st International Conference on Datadriven Knowledge Discovery:When Data Science Meets Information Science.June 19–22,2016,Beijing·China 被引量:1
9
作者 the jdis editors 《Journal of Data and Information Science》 2016年第3期1-5,共5页
The 1st International Conference on Data-driven Knowledge Discovery: When Data Science Meets Information Science took place at the National Science Library (NSL), Chinese Academy of Sciences (CAS) in Beijing from... The 1st International Conference on Data-driven Knowledge Discovery: When Data Science Meets Information Science took place at the National Science Library (NSL), Chinese Academy of Sciences (CAS) in Beijing from June 19 till June 22, 2016. The Conference was opened by NSL Director Xiangyang Huang, who placed the event within the goals of the Library, and lauded the spirit of intemational collaboration in the area of data science and knowledge discovery. The whole event was an encouraging success with over 370 registered participants and highly enlightening presentations. The Conference was organized by the Journal of Data andlnformation Science (JDIS) to bring the Joumal to the attention of an international and local audience. 展开更多
关键词 DATA BEIJING China The 1st International Conference on Datadriven knowledge discovery
下载PDF
A Granular Computing Approach to Knowledge Discovery in Relational Databases 被引量:3
10
作者 QIU Tao-Rong LIU Qing HUANG Hou-Kuan 《自动化学报》 EI CSCD 北大核心 2009年第8期1071-1079,共9页
关键词 关系数据库 自动化系统 计算方法 信息技术
下载PDF
Construction and Application of the Multidimensional Table for Knowledge Discovery in Ancient Chinese Books on Materia Medica 被引量:1
11
作者 Rui Jin Qian Lin +2 位作者 Jun Zhou Boyu Sun Bing Zhang 《Engineering(科研)》 2013年第10期1-6,共6页
Knowledge discovery, as an increasingly adopted information technology in biomedical science, has shown great promise in the field of Traditional Chinese Medicine (TCM). In this paper, we provided a kind of multidimen... Knowledge discovery, as an increasingly adopted information technology in biomedical science, has shown great promise in the field of Traditional Chinese Medicine (TCM). In this paper, we provided a kind of multidimensional table which was well suited for organizing and analyzing the data in ancient Chinese books on Materia Medica. Moreover, we demonstrated its capability of facilitating further mining works in TCM through two illustrative studies of discovering meaningful patterns in the three-dimensional table of Shennong’s Classic of Materia Medica. This work might provide an appropriate data model for the development of knowledge discovery in TCM. 展开更多
关键词 MULTIDIMENSIONAL TABLE TCM HERBAL MEDICINE Data Mining knowledge discovery
下载PDF
A knowledge discovery method based on analysis of multiple co-occurrence relationships in collections of journal papers 被引量:4
12
作者 Hongshen PANG 《Chinese Journal of Library and Information Science》 2012年第4期9-20,共12页
Purpose: This paper explores a method of knowledge discovery by visualizing and analyzing co-occurrence relations among three or more entities in collections of journal articles.Design/methodology/approach: A variety ... Purpose: This paper explores a method of knowledge discovery by visualizing and analyzing co-occurrence relations among three or more entities in collections of journal articles.Design/methodology/approach: A variety of methods such as the model construction,system analysis and experiments are used. The author has improved Morris' crossmapping technique and developed a technique for directly describing,visualizing and analyzing co-occurrence relations among three or more entities in collections of journal articles.Findings: The visualization tools and the knowledge discovery method can efficiently reveal the multiple co-occurrence relations among three entities in collections of journal papers. It can reveal more and in-depth information than analyzing co-occurrence relations between two entities. Therefore,this method can be used for mapping knowledge domain that is manifested in association with the entities from multi-dimensional perspectives and in an all-round way.Research limitations: The technique could only be used to analyze co-occurrence relations of less than three entities at present.Practical implications: This research has expanded the study scope of co-occurrence analysis.The research result has provided a theoretical support for co-occurrence analysis.Originality/value: There has not been a systematic study on co-occurrence relations among multiple entities in collections of journal articles. This research defines multiple co-occurrence and the research scope,develops the visualization analysis tool and designs the analysis model of the knowledge discovery method. 展开更多
关键词 Multiple co-occurrence Visualization analysis knowledge discovery Research field analysis Embryonic stem cell
下载PDF
Integrated Solution for Discovery of Literature Information Knowledge
13
作者 徐慧 《International Journal of Mining Science and Technology》 SCIE EI 2000年第2期91-94,共4页
An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical ill... An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical illustrative example for discovery of literature information knowledge is given. 展开更多
关键词 knowledge discovery DATA MINING DATA WAREHOUSE DATABASE Weh
下载PDF
Structural choice based on knowledge discovery system
14
作者 XING Fangliang(邢方亮) +1 位作者 WANG Guangyuan(王光远) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期263-266,共4页
Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part c... Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part constructed with a KDD subsystem, is put forward to make a decision for a large scale engineering project. A typical CBR system consists of four parts: case representation, case retriever, evaluation, and adaptation. A case library is a set of parameterized excellent and successful structures. For a structural choice, the key point is that the system must be able to detect the pattern classes hidden in the case library and classify the input parameters into classes properly. That is done by using the KDD Data Mining algorithm based on Self Organizing Feature Maps (SOFM), which makes the whole system more adaptive, self organizing, self learning and open. 展开更多
关键词 knowledge discovery in DATABASE data mining SELF-ORGANIZING feature MAPS STRUCTURAL CHOICE
下载PDF
Research of united model of knowledge discovery state space and its application
15
作者 You Fucheng Song Wei Yang Bingru 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期875-880,共6页
There are both associations and differences between structured and unstructured data mining. How to unite them together to be a united theoretical framework and to guide the research of knowledge discovery and data mi... There are both associations and differences between structured and unstructured data mining. How to unite them together to be a united theoretical framework and to guide the research of knowledge discovery and data mining has become an urgent problem to be solved. On the base of analysis and study of existing research results, the united model of knowledge discovery state space (UMKDSS) is presented, and the structured data mining and the complex type data mining are associated together. UMKDSS can provide theoretical guidance for complex type data mining. An application example of UMKDSS is given at last. 展开更多
关键词 knowledge discovery unstructured data knowledge template.
下载PDF
Applying Logic Programming to Knowledge Discovery on the Internet
16
作者 Cheng Xi,Feng Gang,Hou Yin Bin Institute of Computer Information and Technology , Xi’an Jiaotong University, Xi’an 710049, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期320-325,共6页
LP (Logic Programming) has been successfully applied to knowledge discovery in many fields. The execution of the LP is based on the evaluation of the first order predicate. Usually the information involved in the pred... LP (Logic Programming) has been successfully applied to knowledge discovery in many fields. The execution of the LP is based on the evaluation of the first order predicate. Usually the information involved in the predicates are local and homogenous, thus the evaluation process is relatively simple. However, the evaluation process become much more complicated when applied to KDD on the Internet where the information involved in the predicates maybe heterogeneous and distributed over many different sits. Therefor, we try to attack the problem in a multi agent system's framework so that the logic program can be written in a site independent style and deal easily with heterogeneous represented information. 展开更多
关键词 logic programming knowledge discovery INTERNET
下载PDF
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
17
作者 Jeya Balaji Balasubramanian Vanathi Gopalakrishnan 《World Journal of Clinical Oncology》 CAS 2018年第5期98-109,共12页
AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a... AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p model. This relevant background knowledge also led to a gain in AUC.CONCLUSION BRL_p enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data. 展开更多
关键词 Supervised machine learning RULE-BASED models BAYESIAN methods Background knowledge INFORMATIVE PRIORS BIOMARKER discovery
下载PDF
Method and Application of Comprehensive Knowledge Discovery
18
作者 SHAZongyao BIANFuling 《Geo-Spatial Information Science》 2003年第3期48-55,共8页
This paper proposes the principle of comprehensive knowledge discovery. Unlike most of the current knowledge discovery methods, the comprehensive knowledge discovery considers both the spatial relations and attributes... This paper proposes the principle of comprehensive knowledge discovery. Unlike most of the current knowledge discovery methods, the comprehensive knowledge discovery considers both the spatial relations and attributes of spatial entities or objects. We introduce the theory of spatial knowledge expression system and some concepts including comprehensive knowledge discovery and spatial union information table (SUIT). In theory, SUIT records all information contained in the studied objects, but in reality, because of the complexity and varieties of spatial relations, only those factors of interest to us are selected. In order to find out the comprehensive knowledge from spatial databases, an efficient comprehensive knowledge discovery algorithm called recycled algorithm (RAR) is suggested. 展开更多
关键词 comprehensive knowledge discovery knowledge discovery algorithm spatialassociation rule knowledge expression system data mining
下载PDF
Intelligent Information Management and Knowledge Discovery in Large Numeric and Scientific Databases
19
作者 Patrick Perrin Frederick E. Petry & William Thomason(Center for Intelligent and Knowledge-Based Systems)(Computer Science Department, Tulane University, New Orleans LA) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第2期73-86,共14页
The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to th... The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules. 展开更多
关键词 knowledge discovery in databases Machine learning Decision tree inducers
下载PDF
DNA Coding Based Knowledge Discovery Algorithm
20
作者 李继云 耿兆丰 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第4期84-86,共3页
A novel DNA coding based knowledge discovery algorithm was proposed, an example which verified its validity was given. It is proved that this algorithm can discover new simplified rules from the original rule set effi... A novel DNA coding based knowledge discovery algorithm was proposed, an example which verified its validity was given. It is proved that this algorithm can discover new simplified rules from the original rule set efficiently. 展开更多
关键词 DNA knowledge discovery rule set CODING
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部