期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
KeEL: knowledge enhanced entity linking in automatic biography construction
1
作者 Zhang Tianlei Zhang Xinyu Guo Mu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第1期57-64,71,共9页
Biography is a direct and extensive way to know the representation of well known peoples, however, for common people, there is poor knowledge for them to be recognized. In recent years, information extraction (IE) t... Biography is a direct and extensive way to know the representation of well known peoples, however, for common people, there is poor knowledge for them to be recognized. In recent years, information extraction (IE) technologies have been used to automatically generate biography for any people with online information. One of the key challenges is the entity linking (EL) which can link biography sentence to corresponding entities. Currently the used general EL systems usually generate errors originated from entity name variation and ambiguity. Compared with general text, biography sentences possess unique yet rarely studied relational knowledge (RK) and temporal knowledge (TK), which could sufficiently distinguish entities. This article proposed a new statistical framework called the knowledge enhanced EL (KeEL) system for automated biography construction. It utilizes commonsense knowledge like PK and TK to enhance Entity Linking. The performance of KeEL on Wikipedia data was evaluated. It is shown that, compared with state-of-the-art method, KeEL significantly improves the precision and recall of Entity Linking. 展开更多
关键词 knowledge enhanced entity linking entity linking biography construction Markov logic network knowledge
原文传递
Algorithms mention in full-text content of article from NLP domain:A comparative analysis between English and Chinese
2
作者 Chengzhi Zhang Ruiyi Ding Yuzhuo Wang 《Data Science and Informetrics》 2021年第2期19-33,共15页
Algorithms play an increasingly important role in scientific work,especially in data-driven research.Investigating the mention of algorithms in full-text paper helps us understand the use and development of algorithms... Algorithms play an increasingly important role in scientific work,especially in data-driven research.Investigating the mention of algorithms in full-text paper helps us understand the use and development of algorithms in a specific domain.Current research on the mention of algorithms is limited to the academic papers in one language,which is hard to comprehensively investigate the use of algorithms.For example,in papers of Chinese conference,is the mention of algorithms consistent with it in English conference papers?In order to answer this question,this paper takes NLP as an example,and compares the mention frequency,mention location and mention time of the top10 data-mining algorithms between the papers of the famous international conference,Annual Meeting of the Association for Computational Linguistics(ACL),and the Chinese conference,China National Conference on Computational Linguistics(CCL).The results show that compared with ACL,the mention frequency of top10 data-mining algorithms in CCL is slightly lower and the mention time is slightly delayed,while the distribution of mention location is similar.This study can provide a reference for the research related to the mention,citation and evaluation of knowledge entities. 展开更多
关键词 knowledge entity Mention of algorithms Full-text analysis Algorithm evaluation Scholarly big data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部