To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge gra...To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge graph completion(KGC).Related research work has shown the superiority of convolutional neural networks(CNNs)in extracting semantic features of triple embeddings.However,these researches use only one single-shaped filter and fail to extract semantic features of different granularity.To solve this problem,ConvKG exploits multi-shaped filters to co-convolute on the triple embeddings,joint learning semantic features of different granularity.Different shaped filters cover different sizes on the triple embeddings and capture pairwise interactions of different granularity among triple elements.Experimental results confirm the strength of joint learning,and compared with state-of-the-art CNN-based KGC models,ConvKG achieves the better mean rank(MR)and Hits@10 metrics on dataset WN18 RR,and the better MR on dataset FB15k-237.展开更多
In the link prediction task of knowledge graph completion,Graph Neural Network(GNN)-based knowledge graph completion models have been shown by previous studies to produce large improvements in prediction results.Howev...In the link prediction task of knowledge graph completion,Graph Neural Network(GNN)-based knowledge graph completion models have been shown by previous studies to produce large improvements in prediction results.However,many of the previous efforts were limited to aggregating the information given by neighboring nodes and did not take advantage of the information provided by the edges represented by relations.To address the problem,Coupling Relation Strength with Graph Convolutional Networks(RS-GCN)is proposed,which is a model with an encoder-decoder framework to realize the embedding of entities and relations in the vector space.On the encoder side,RS-GCN captures graph structure and neighborhood information while aggregating the information given by neighboring nodes.On the decoder side,RotatE is utilized to model and infer various relational patterns.The models are evaluated on standard FB15k,WN18,FB15k-237 and WN18RR datasets,and the experiments show that RS-GCN achieves better results than the current state-of-the-art classical models on the above knowledge graph datasets.展开更多
Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack...Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model.展开更多
基金Supported by the National Natural Science Foundation of China(No.61876144)。
文摘To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge graph completion(KGC).Related research work has shown the superiority of convolutional neural networks(CNNs)in extracting semantic features of triple embeddings.However,these researches use only one single-shaped filter and fail to extract semantic features of different granularity.To solve this problem,ConvKG exploits multi-shaped filters to co-convolute on the triple embeddings,joint learning semantic features of different granularity.Different shaped filters cover different sizes on the triple embeddings and capture pairwise interactions of different granularity among triple elements.Experimental results confirm the strength of joint learning,and compared with state-of-the-art CNN-based KGC models,ConvKG achieves the better mean rank(MR)and Hits@10 metrics on dataset WN18 RR,and the better MR on dataset FB15k-237.
文摘In the link prediction task of knowledge graph completion,Graph Neural Network(GNN)-based knowledge graph completion models have been shown by previous studies to produce large improvements in prediction results.However,many of the previous efforts were limited to aggregating the information given by neighboring nodes and did not take advantage of the information provided by the edges represented by relations.To address the problem,Coupling Relation Strength with Graph Convolutional Networks(RS-GCN)is proposed,which is a model with an encoder-decoder framework to realize the embedding of entities and relations in the vector space.On the encoder side,RS-GCN captures graph structure and neighborhood information while aggregating the information given by neighboring nodes.On the decoder side,RotatE is utilized to model and infer various relational patterns.The models are evaluated on standard FB15k,WN18,FB15k-237 and WN18RR datasets,and the experiments show that RS-GCN achieves better results than the current state-of-the-art classical models on the above knowledge graph datasets.
基金Supported by the National Natural Science Foundation of China(No.61876144).
文摘Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model.