期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Automated Penetration Semantic Knowledge Mining Algorithm Based on Bayesian Inference 被引量:3
1
作者 Yichao Zang Tairan Hu +1 位作者 Tianyang Zhou Wanjiang Deng 《Computers, Materials & Continua》 SCIE EI 2021年第3期2573-2585,共13页
Mining penetration testing semantic knowledge hidden in vast amounts of raw penetration testing data is of vital importance for automated penetration testing.Associative rule mining,a data mining technique,has been st... Mining penetration testing semantic knowledge hidden in vast amounts of raw penetration testing data is of vital importance for automated penetration testing.Associative rule mining,a data mining technique,has been studied and explored for a long time.However,few studies have focused on knowledge discovery in the penetration testing area.The experimental result reveals that the long-tail distribution of penetration testing data nullifies the effectiveness of associative rule mining algorithms that are based on frequent pattern.To address this problem,a Bayesian inference based penetration semantic knowledge mining algorithm is proposed.First,a directed bipartite graph model,a kind of Bayesian network,is constructed to formalize penetration testing data.Then,we adopt the maximum likelihood estimate method to optimize the model parameters and decompose a large Bayesian network into smaller networks based on conditional independence of variables for improved solution efficiency.Finally,irrelevant variable elimination is adopted to extract penetration semantic knowledge from the conditional probability distribution of the model.The experimental results show that the proposed method can discover penetration semantic knowledge from raw penetration testing data effectively and efficiently. 展开更多
关键词 Penetration semantic knowledge automated penetration testing Bayesian inference cyber security
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部