Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a resu...Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.展开更多
With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as it...With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as its effective organization and expression.Knowledge graphs have thus emerged,and knowledge reasoning based on this tool has become one of the hot spots of research.This paper first presents a brief introduction to the development of knowledge graphs and knowledge reasoning,and explores the significance of knowledge reasoning.Secondly,the mainstream knowledge reasoning methods,including knowledge reasoning based on traditional rules,knowledge reasoning based on distributed feature representation,and knowledge reasoning based on neural networks are introduced.Then,using stroke as an example,the knowledge reasoning methods are expounded,the principles and characteristics of commonly used knowledge reasoning methods are summarized,and the research and applications of knowledge reasoning techniques in TCM in recent years are sorted out.Finally,we summarize the problems faced in the development of knowledge reasoning in TCM,and put forward the importance of constructing a knowledge reasoning model suitable for the field of TCM.展开更多
Unmanned aerial vehicles(UAVs)are increasingly applied in various mission scenarios for their versatility,scalability and cost-effectiveness.In UAV mission planning systems(UMPSs),an efficient mission planning strateg...Unmanned aerial vehicles(UAVs)are increasingly applied in various mission scenarios for their versatility,scalability and cost-effectiveness.In UAV mission planning systems(UMPSs),an efficient mission planning strategy is essential to meet the requirements of UAV missions.However,rapidly changing environments and unforeseen threats pose challenges to UMPSs,making efficient mission planning difficult.To address these challenges,knowledge graph technology can be utilized to manage the complex relations and constraints among UAVs,missions,and environments.This paper investigates knowledge graph application in UMPSs,exploring its modeling,representation,and storage concepts and methodologies.Subsequently,the construction of a specialized knowledge graph for UMPS is detailed.Furthermore,the paper delves into knowledge reasoning within UMPSs,emphasizing its significance in timely updates in the dynamic environment.A graph neural network(GNN)-based approach is proposed for knowledge reasoning,leveraging GNNs to capture structural information and accurately predict missing entities or relations in the knowledge graph.For relation reasoning,path information is also incorporated to improve the accuracy of inference.To account for the temporal dynamics of the environment in UMPS,the influence of timestamps is captured through the attention mechanism.The effectiveness and applicability of the proposed knowledge reasoning method are verified via simulations.展开更多
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ...Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.展开更多
Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accur...Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accurate RCA of abnormal aluminum electrolysis cell condition is the precondition of improving current efficiency. RCA of abnormal condition is a complex work of multi-source knowledge fusion, which is difficult to ensure the RCA accuracy of abnormal cell condition because of dwindling and frequent flow of experienced technicians. In view of this, a method based on Fuzzy- Bayesian network to construct multi-source knowledge solidification reasoning model is proposed. The method can effectively fuse and solidify the knowledge, which is used to analyze the cause of abnormal condition by technicians providing a clear and intuitive framework to this complex task, and also achieve the result of root cause automatically. The proposed method was verified under 20 sets of abnormal cell conditions, and implements root cause analysis by finding the abnormal state of root node, which has a maximum posterior probability by Bayesian diagnosis reasoning. The accuracy of the test results is up to 95%, which shows that the knowledge reasoning feasibility for RCA of aluminum electrolysis cell.展开更多
Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process f...Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.展开更多
Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented ...Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application; integrate the heterogeneous knowledge, such as model, symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.展开更多
Data production and exchange on the Web grows at a frenetic speed. Such uncontrolled and exponential growth pushes for new researches in the area of information extraction as it is of great interest and can be obtaine...Data production and exchange on the Web grows at a frenetic speed. Such uncontrolled and exponential growth pushes for new researches in the area of information extraction as it is of great interest and can be obtained by processing data gathered from several heterogeneous sources. While some extracted facts can be correct at the origin, it is not possible to verify that correlations among the mare always true (e.g., they can relate to different points of time). We need systems smart enough to separate signal from noise and hence extract real value from this abundance of content accessible on the Web. In order to extract information from heterogeneous sources, we are involved into the entire process of identifying specific facts/events of interest. We propose a gluing architecture, driving the whole knowledge acquisition process, from data acquisition from external heterogeneous resources to their exploitation for RDF trip lification to support reasoning tasks. Once the extraction process is completed, a dedicated reasoner can infer new knowledge as a result of the reasoning process defined by the end user by means of specific inference rules over both extracted information and the background knowledge. The end user is supported in this context with an intelligent interface allowing to visualize either specific data/concepts, or all information inferred by applying deductive reasoning over a collection of data.展开更多
Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguo...Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguous and abundance of the Web log file, the least decision making model based on rough set theory was presented for Web mining. And an example was given to explain the model. The model can predigest the decision making table, so that the least solution of the table can be acquired. According to the least solution, the corresponding decision for individual service can be made in sequence. Web mining based on rough set theory is also currently the original and particular method.展开更多
Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs wi...Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field.To this end,we offer an in-depth review of MKG in this work.Our research begins with the examination of four types of medical information sources,knowledge graph creation methodologies,and six major themes for MKG development.Furthermore,three popular models of reasoning from the viewpoint of knowledge reasoning are discussed.A reasoning implementation path(RIP)is proposed as a means of expressing the reasoning procedures for MKG.In addition,we explore intelligent medical applications based on RIP and MKG and classify them into nine major types.Finally,we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities.展开更多
Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this pape...Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.展开更多
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent performance.Reinforcement Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential ...Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent performance.Reinforcement Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision problem.An intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance unstable.Current mainstream methods apply heuristic reward functions to counter this challenge.However,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object entities.To this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning process.Experimental results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.展开更多
The geologic analogy expert system of oil-generating depressions (GAESOD) constructed on IBM 386 by using GCLISP language is a tool-type expert system for geologic analogy .GAESOD consists of eight parts: (1) illustra...The geologic analogy expert system of oil-generating depressions (GAESOD) constructed on IBM 386 by using GCLISP language is a tool-type expert system for geologic analogy .GAESOD consists of eight parts: (1) illustrating module of system; (2) general controlling module; (3) knowledge base; (4 (reasoning module; (5 )data base; (6)explanation module; (7)gaining and managing module of knowledge; (8) managing module of data base .There are 36 known models of oil-generating depressions of the eastern part and the continental shelf of China in the knowledge base .Three values,such as resemblance coefficient ,certainty factor and fine-poor coefficient ,will be acquired if this system is applied to any two on-generating depressions .Finally,GAESOD are applied to the analysis of some data from Xichang depression ,Hepu basin and the conclusions from this system are consistent with the results from geologic experts.展开更多
With this work, we introduce a novel method for the unsupervised learning of conceptual hierarchies, or concept maps as they are sometimes called, which is aimed specifically for use with literary texts, as such disti...With this work, we introduce a novel method for the unsupervised learning of conceptual hierarchies, or concept maps as they are sometimes called, which is aimed specifically for use with literary texts, as such distinguishing itself from the majority of research literature on the topic which is primarily focused on building ontologies from a vast array of different types of data sources, both structured and unstructured, to support various forms of AI, in particular, the Semantic Web as envisioned by Tim Berners-Lee. We first elaborate on mutually informing disciplines of philosophy and computer science, or more specifically the relationship between metaphysics, epistemology, ontology, computing and AI, followed by a technically in-depth discussion of DEBRA, our dependency tree based concept hierarchy constructor, which as its name alludes to, constructs a conceptual map in the form of a directed graph which illustrates the concepts, their respective relations, and the implied ontological structure of the concepts as encoded in the text, decoded with standard Python NLP libraries such as spaCy and NLTK. With this work we hope to both augment the Knowledge Representation literature with opportunities for intellectual advancement in AI with more intuitive, less analytical, and well-known forms of knowledge representation from the cognitive science community, as well as open up new areas of research between Computer Science and the Humanities with respect to the application of the latest in NLP tools and techniques upon literature of cultural significance, shedding light on existing methods of computation with respect to documents in semantic space that effectively allows for, at the very least, the comparison and evolution of texts through time, using vector space math.展开更多
Collecting massive commonsense knowledge (CSK) for commonsense reasoning has been a long time standing challenge within artificial intelligence research. Numerous methods and systems for acquiring CSK have been deve...Collecting massive commonsense knowledge (CSK) for commonsense reasoning has been a long time standing challenge within artificial intelligence research. Numerous methods and systems for acquiring CSK have been developed to overcome the knowledge acquisition bottleneck. Although some specific commonsense reasoning tasks have been presented to allow researchers to measure and compare the performance of their CSK systems, we compare them at a higher level from the following aspects: CSK acquisition task (what CSK is acquired from where), technique used (how can CSK be acquired), and CSK evaluation methods (how to evaluate the acquired CSK). In this survey, we first present a categorization of CSK acquisition systems and the great challenges in the field. Then, we review and compare the CSK acquisition systems in detail. Finally, we conclude the current progress in this field and explore some promising future research issues.展开更多
Quantitative investment(abbreviated as“quant”in this paper)is an interdisciplinary field combining financial engineering,computer science,mathematics,statistics,etc.Quant has become one of the mainstream investment ...Quantitative investment(abbreviated as“quant”in this paper)is an interdisciplinary field combining financial engineering,computer science,mathematics,statistics,etc.Quant has become one of the mainstream investment methodologies over the past decades,and has experienced three generations:quant 1.0,trading by mathematical modeling to discover mis-priced assets in markets;quant 2.0,shifting the quant research pipeline from small“strategy workshops”to large“alpha factories”;quant 3.0,applying deep learning techniques to discover complex nonlinear pricing rules.Despite its advantage in prediction,deep learning relies on extremely large data volume and labor-intensive tuning of“black-box”neural network models.To address these limitations,in this paper,we introduce quant 4.0 and provide an engineering perspective for next-generation quant.Quant 4.0 has three key differentiating components.First,automated artificial intelligence(AI)changes the quant pipeline from traditional hand-crafted modeling to state-of-the-art automated modeling and employs the philosophy of“algorithm produces algorithm,model builds model,and eventually AI creates AI.”Second,explainable AI develops new techniques to better understand and interpret investment decisions made by machine learning black boxes,and explains complicated and hidden risk exposures.Third,knowledge-driven AI supplements data-driven AI such as deep learning and incorporates prior knowledge into modeling to improve investment decisions,in particular for quantitative value investing.Putting all these together,we discuss how to build a system that practices the quant 4.0 concept.We also discuss the application of large language models in quantitative finance.Finally,we propose 10 challenging research problems for quant technology,and discuss potential solutions,research directions,and future trends.展开更多
The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the...The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appro- priateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in perma-frost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.展开更多
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
文摘Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.
基金The National Key R&D Program of China(2018AAA0102100)Hunan Provincial Department of Education Outstanding Youth Project(22B0385)+2 种基金Open Fund of the Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine(2018ZYX17)Electronic Science and Technology Discipline Open Fund Project of School of Information Science and Engineering,Hunan University of Chinese Medicine(2018-2)Hunan University of Chinese Medicine Graduate Innovation Project(2022CX122)。
文摘With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as its effective organization and expression.Knowledge graphs have thus emerged,and knowledge reasoning based on this tool has become one of the hot spots of research.This paper first presents a brief introduction to the development of knowledge graphs and knowledge reasoning,and explores the significance of knowledge reasoning.Secondly,the mainstream knowledge reasoning methods,including knowledge reasoning based on traditional rules,knowledge reasoning based on distributed feature representation,and knowledge reasoning based on neural networks are introduced.Then,using stroke as an example,the knowledge reasoning methods are expounded,the principles and characteristics of commonly used knowledge reasoning methods are summarized,and the research and applications of knowledge reasoning techniques in TCM in recent years are sorted out.Finally,we summarize the problems faced in the development of knowledge reasoning in TCM,and put forward the importance of constructing a knowledge reasoning model suitable for the field of TCM.
基金This work was supported in part by the National Natural Science Foundation of China(62271097,U23A20279).
文摘Unmanned aerial vehicles(UAVs)are increasingly applied in various mission scenarios for their versatility,scalability and cost-effectiveness.In UAV mission planning systems(UMPSs),an efficient mission planning strategy is essential to meet the requirements of UAV missions.However,rapidly changing environments and unforeseen threats pose challenges to UMPSs,making efficient mission planning difficult.To address these challenges,knowledge graph technology can be utilized to manage the complex relations and constraints among UAVs,missions,and environments.This paper investigates knowledge graph application in UMPSs,exploring its modeling,representation,and storage concepts and methodologies.Subsequently,the construction of a specialized knowledge graph for UMPS is detailed.Furthermore,the paper delves into knowledge reasoning within UMPSs,emphasizing its significance in timely updates in the dynamic environment.A graph neural network(GNN)-based approach is proposed for knowledge reasoning,leveraging GNNs to capture structural information and accurately predict missing entities or relations in the knowledge graph.For relation reasoning,path information is also incorporated to improve the accuracy of inference.To account for the temporal dynamics of the environment in UMPS,the influence of timestamps is captured through the attention mechanism.The effectiveness and applicability of the proposed knowledge reasoning method are verified via simulations.
基金supported in part by the Beijing Natural Science Foundation under Grants L211020 and M21032in part by the National Natural Science Foundation of China under Grants U1836106 and 62271045in part by the Scientific and Technological Innovation Foundation of Foshan under Grants BK21BF001 and BK20BF010。
文摘Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.
文摘Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accurate RCA of abnormal aluminum electrolysis cell condition is the precondition of improving current efficiency. RCA of abnormal condition is a complex work of multi-source knowledge fusion, which is difficult to ensure the RCA accuracy of abnormal cell condition because of dwindling and frequent flow of experienced technicians. In view of this, a method based on Fuzzy- Bayesian network to construct multi-source knowledge solidification reasoning model is proposed. The method can effectively fuse and solidify the knowledge, which is used to analyze the cause of abnormal condition by technicians providing a clear and intuitive framework to this complex task, and also achieve the result of root cause automatically. The proposed method was verified under 20 sets of abnormal cell conditions, and implements root cause analysis by finding the abnormal state of root node, which has a maximum posterior probability by Bayesian diagnosis reasoning. The accuracy of the test results is up to 95%, which shows that the knowledge reasoning feasibility for RCA of aluminum electrolysis cell.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175019,61104169,51205321)
文摘Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.
基金Supported by National Natural Science Foundation of China(No.70271002)
文摘Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application; integrate the heterogeneous knowledge, such as model, symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.
文摘Data production and exchange on the Web grows at a frenetic speed. Such uncontrolled and exponential growth pushes for new researches in the area of information extraction as it is of great interest and can be obtained by processing data gathered from several heterogeneous sources. While some extracted facts can be correct at the origin, it is not possible to verify that correlations among the mare always true (e.g., they can relate to different points of time). We need systems smart enough to separate signal from noise and hence extract real value from this abundance of content accessible on the Web. In order to extract information from heterogeneous sources, we are involved into the entire process of identifying specific facts/events of interest. We propose a gluing architecture, driving the whole knowledge acquisition process, from data acquisition from external heterogeneous resources to their exploitation for RDF trip lification to support reasoning tasks. Once the extraction process is completed, a dedicated reasoner can infer new knowledge as a result of the reasoning process defined by the end user by means of specific inference rules over both extracted information and the background knowledge. The end user is supported in this context with an intelligent interface allowing to visualize either specific data/concepts, or all information inferred by applying deductive reasoning over a collection of data.
文摘Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguous and abundance of the Web log file, the least decision making model based on rough set theory was presented for Web mining. And an example was given to explain the model. The model can predigest the decision making table, so that the least solution of the table can be acquired. According to the least solution, the corresponding decision for individual service can be made in sequence. Web mining based on rough set theory is also currently the original and particular method.
基金supported in part by the National Key Research and Development Program of China(No.2021YFF1201200)the National Natural Science Foundation of China(No.62006251)the Science and Technology Innovation Program of Hunan Province(No.2021RC4008).
文摘Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field.To this end,we offer an in-depth review of MKG in this work.Our research begins with the examination of four types of medical information sources,knowledge graph creation methodologies,and six major themes for MKG development.Furthermore,three popular models of reasoning from the viewpoint of knowledge reasoning are discussed.A reasoning implementation path(RIP)is proposed as a means of expressing the reasoning procedures for MKG.In addition,we explore intelligent medical applications based on RIP and MKG and classify them into nine major types.Finally,we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities.
基金supported by the National Natural Science Foundation of China (7117114371201087)+1 种基金the Tianjin Municipal Research Program of Application Foundation and Advanced Technology of China (10JCY-BJC07300)the Science and Technology Program of FOXCONN Group (120024001156)
文摘Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.
基金This work was supported by the National Natural Science Foundation of China(No.U19A2059)。
文摘Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent performance.Reinforcement Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision problem.An intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance unstable.Current mainstream methods apply heuristic reward functions to counter this challenge.However,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object entities.To this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning process.Experimental results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.
文摘The geologic analogy expert system of oil-generating depressions (GAESOD) constructed on IBM 386 by using GCLISP language is a tool-type expert system for geologic analogy .GAESOD consists of eight parts: (1) illustrating module of system; (2) general controlling module; (3) knowledge base; (4 (reasoning module; (5 )data base; (6)explanation module; (7)gaining and managing module of knowledge; (8) managing module of data base .There are 36 known models of oil-generating depressions of the eastern part and the continental shelf of China in the knowledge base .Three values,such as resemblance coefficient ,certainty factor and fine-poor coefficient ,will be acquired if this system is applied to any two on-generating depressions .Finally,GAESOD are applied to the analysis of some data from Xichang depression ,Hepu basin and the conclusions from this system are consistent with the results from geologic experts.
文摘With this work, we introduce a novel method for the unsupervised learning of conceptual hierarchies, or concept maps as they are sometimes called, which is aimed specifically for use with literary texts, as such distinguishing itself from the majority of research literature on the topic which is primarily focused on building ontologies from a vast array of different types of data sources, both structured and unstructured, to support various forms of AI, in particular, the Semantic Web as envisioned by Tim Berners-Lee. We first elaborate on mutually informing disciplines of philosophy and computer science, or more specifically the relationship between metaphysics, epistemology, ontology, computing and AI, followed by a technically in-depth discussion of DEBRA, our dependency tree based concept hierarchy constructor, which as its name alludes to, constructs a conceptual map in the form of a directed graph which illustrates the concepts, their respective relations, and the implied ontological structure of the concepts as encoded in the text, decoded with standard Python NLP libraries such as spaCy and NLTK. With this work we hope to both augment the Knowledge Representation literature with opportunities for intellectual advancement in AI with more intuitive, less analytical, and well-known forms of knowledge representation from the cognitive science community, as well as open up new areas of research between Computer Science and the Humanities with respect to the application of the latest in NLP tools and techniques upon literature of cultural significance, shedding light on existing methods of computation with respect to documents in semantic space that effectively allows for, at the very least, the comparison and evolution of texts through time, using vector space math.
基金supported by the National Natural Science Foundation of China under Grant Nos.91224006,61173063,61035004,61203284,and 309737163the National Social Science Foundation of China under Grant No.10AYY003
文摘Collecting massive commonsense knowledge (CSK) for commonsense reasoning has been a long time standing challenge within artificial intelligence research. Numerous methods and systems for acquiring CSK have been developed to overcome the knowledge acquisition bottleneck. Although some specific commonsense reasoning tasks have been presented to allow researchers to measure and compare the performance of their CSK systems, we compare them at a higher level from the following aspects: CSK acquisition task (what CSK is acquired from where), technique used (how can CSK be acquired), and CSK evaluation methods (how to evaluate the acquired CSK). In this survey, we first present a categorization of CSK acquisition systems and the great challenges in the field. Then, we review and compare the CSK acquisition systems in detail. Finally, we conclude the current progress in this field and explore some promising future research issues.
文摘Quantitative investment(abbreviated as“quant”in this paper)is an interdisciplinary field combining financial engineering,computer science,mathematics,statistics,etc.Quant has become one of the mainstream investment methodologies over the past decades,and has experienced three generations:quant 1.0,trading by mathematical modeling to discover mis-priced assets in markets;quant 2.0,shifting the quant research pipeline from small“strategy workshops”to large“alpha factories”;quant 3.0,applying deep learning techniques to discover complex nonlinear pricing rules.Despite its advantage in prediction,deep learning relies on extremely large data volume and labor-intensive tuning of“black-box”neural network models.To address these limitations,in this paper,we introduce quant 4.0 and provide an engineering perspective for next-generation quant.Quant 4.0 has three key differentiating components.First,automated artificial intelligence(AI)changes the quant pipeline from traditional hand-crafted modeling to state-of-the-art automated modeling and employs the philosophy of“algorithm produces algorithm,model builds model,and eventually AI creates AI.”Second,explainable AI develops new techniques to better understand and interpret investment decisions made by machine learning black boxes,and explains complicated and hidden risk exposures.Third,knowledge-driven AI supplements data-driven AI such as deep learning and incorporates prior knowledge into modeling to improve investment decisions,in particular for quantitative value investing.Putting all these together,we discuss how to build a system that practices the quant 4.0 concept.We also discuss the application of large language models in quantitative finance.Finally,we propose 10 challenging research problems for quant technology,and discuss potential solutions,research directions,and future trends.
基金support provide by Special Fund for Basic Scientific Research of Central Col leges, Changan University (310821172002)Postdoctoral Science Foundation of China (2016M590915)+2 种基金Basic Research Func of Ministry of Transportation (2014319812170)National Sci Tech Support Plan (2014BAG05B01)Basic Research Program of Natural Science in Shaanxi Province (S2017-ZRJJ-MS0603)
文摘The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appro- priateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in perma-frost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.