期刊文献+
共找到1,517篇文章
< 1 2 76 >
每页显示 20 50 100
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
1
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning:DTRLpath
2
作者 Shiming Lin Ling Ye +4 位作者 Yijie Zhuang Lingyun Lu Shaoqiu Zheng Chenxi Huang Ng Yin Kwee 《Computers, Materials & Continua》 SCIE EI 2024年第7期299-317,共19页
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi... In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks. 展开更多
关键词 Intelligent agent knowledge graph reasoning REINFORCEMENT transfer learning
下载PDF
IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations
3
作者 Yajing Ma Gulila Altenbek Yingxia Yu 《Computers, Materials & Continua》 SCIE EI 2024年第1期695-712,共18页
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr... Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness. 展开更多
关键词 knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution
下载PDF
A Survey of Knowledge Graph Construction Using Machine Learning
4
作者 Zhigang Zhao Xiong Luo +1 位作者 Maojian Chen Ling Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期225-257,共33页
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ... Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction. 展开更多
关键词 knowledge graph(KG) semantic network relation extraction entity linking knowledge reasoning
下载PDF
An Ontology Reasoning Architecture for Data Mining Knowledge Management 被引量:3
5
作者 ZHENG Liang LI Xueming 《Wuhan University Journal of Natural Sciences》 CAS 2008年第4期396-400,共5页
In order to realize the intelligent management of data mining (DM) domain knowledge, this paper presents an architecture for DM knowledge management based on ontology. Using ontology database, this architecture can ... In order to realize the intelligent management of data mining (DM) domain knowledge, this paper presents an architecture for DM knowledge management based on ontology. Using ontology database, this architecture can realize intelligent knowledge retrieval and automatic accomplishment of DM tasks by means of ontology services. Its key features include:①Describing DM ontology and meta-data using ontology based on Web ontology language (OWL).② Ontology reasoning function. Based on the existing concepts and relations, the hidden knowledge in ontology can be obtained using the reasoning engine. This paper mainly focuses on the construction of DM ontology and the reasoning of DM ontology based on OWL DL(s). 展开更多
关键词 ONTOLOGY data mining knowledge management ontology reasoning
下载PDF
High-Speed Railway Train Timetable Conflict Prediction Based on Fuzzy Temporal Knowledge Reasoning 被引量:3
6
作者 He Zhuang Liping Feng +2 位作者 Chao Wen Qiyuan peng Qizhi Tang 《Engineering》 SCIE EI 2016年第3期366-373,共8页
Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a resu... Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes. 展开更多
关键词 High-speed railway Train timetable Conflict prediction Fuzzy temporal knowledge reasoning
下载PDF
Research on knowledge reasoning of TCM based on knowledge graphs 被引量:4
7
作者 GUO Zhiheng LIU Qingping ZOU Beiji 《Digital Chinese Medicine》 2022年第4期386-393,共8页
With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as it... With the widespread use of Internet,the amount of data in the field of traditional Chinese medicine(TCM)is growing exponentially.Consequently,there is much attention on the collection of useful knowledge as well as its effective organization and expression.Knowledge graphs have thus emerged,and knowledge reasoning based on this tool has become one of the hot spots of research.This paper first presents a brief introduction to the development of knowledge graphs and knowledge reasoning,and explores the significance of knowledge reasoning.Secondly,the mainstream knowledge reasoning methods,including knowledge reasoning based on traditional rules,knowledge reasoning based on distributed feature representation,and knowledge reasoning based on neural networks are introduced.Then,using stroke as an example,the knowledge reasoning methods are expounded,the principles and characteristics of commonly used knowledge reasoning methods are summarized,and the research and applications of knowledge reasoning techniques in TCM in recent years are sorted out.Finally,we summarize the problems faced in the development of knowledge reasoning in TCM,and put forward the importance of constructing a knowledge reasoning model suitable for the field of TCM. 展开更多
关键词 Traditional Chinese medicine(TCM) Stroke knowledge graph knowledge reasoning Assisted decision-making Transloction Embedding(TransE)model
下载PDF
Bayesian Diagnostic Network: A Powerful Model for Representation and Reasoning of Engineering Diagnostic Knowledge 被引量:1
8
作者 HUZhao-yong 《International Journal of Plant Engineering and Management》 2005年第1期28-35,共8页
Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper ... Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper utilizes the Bayesian network to represent and reasondiagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologicstructure based on operating conditions, possible faults and corresponding symptoms. The paper alsodiscusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gasturbine diagnosis is constructed on a platform developed under a Visual C++ environment. It showsthat the Bayesian network is a powerful model for representation and reasoning of diagnosticknowledge. The three-layer structure and the approximate algorithm are effective also. 展开更多
关键词 engineering diagnosis bayesian network reasoning knowledge representation
下载PDF
Critical Relation Path Aggregation-Based Industrial Control Component Exploitable Vulnerability Reasoning 被引量:1
9
作者 Zibo Wang Chaobin Huo +5 位作者 Yaofang Zhang Shengtao Cheng Yilu Chen Xiaojie Wei Chao Li Bailing Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期2957-2979,共23页
With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecas... With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecast potential threats.However,it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods.To address these challenges,we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph(KG)in which relation paths contain abundant potential evidence to support the reasoning.The reasoning task in this work refers to determining whether a specific relation is valid between an attacker entity and a possible exploitable vulnerability entity with the help of a collective of the critical paths.The proposed method consists of three primary building blocks:KG construction,relation path representation,and query relation reasoning.A security-oriented ontology combines exploit modeling,which provides a guideline for the integration of the scattered knowledge while constructing the KG.We emphasize the role of the aggregation of the attention mechanism in representation learning and ultimate reasoning.In order to acquire a high-quality representation,the entity and relation embeddings take advantage of their local structure and related semantics.Some critical paths are assigned corresponding attentive weights and then they are aggregated for the determination of the query relation validity.In particular,similarity calculation is introduced into a critical path selection algorithm,which improves search and reasoning performance.Meanwhile,the proposed algorithm avoids redundant paths between the given pairs of entities.Experimental results show that the proposed method outperforms the state-of-the-art ones in the aspects of embedding quality and query relation reasoning accuracy. 展开更多
关键词 Path-based reasoning representation learning attention mechanism vulnerability knowledge graph industrial control component
下载PDF
ALBERT with Knowledge Graph Encoder Utilizing Semantic Similarity for Commonsense Question Answering 被引量:1
10
作者 Byeongmin Choi YongHyun Lee +1 位作者 Yeunwoong Kyung Eunchan Kim 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期71-82,共12页
Recently,pre-trained language representation models such as bidirec-tional encoder representations from transformers(BERT)have been performing well in commonsense question answering(CSQA).However,there is a problem th... Recently,pre-trained language representation models such as bidirec-tional encoder representations from transformers(BERT)have been performing well in commonsense question answering(CSQA).However,there is a problem that the models do not directly use explicit information of knowledge sources existing outside.To augment this,additional methods such as knowledge-aware graph network(KagNet)and multi-hop graph relation network(MHGRN)have been proposed.In this study,we propose to use the latest pre-trained language model a lite bidirectional encoder representations from transformers(ALBERT)with knowledge graph information extraction technique.We also propose to applying the novel method,schema graph expansion to recent language models.Then,we analyze the effect of applying knowledge graph-based knowledge extraction techniques to recent pre-trained language models and confirm that schema graph expansion is effective in some extent.Furthermore,we show that our proposed model can achieve better performance than existing KagNet and MHGRN models in CommonsenseQA dataset. 展开更多
关键词 Commonsense reasoning question answering knowledge graph language representation model
下载PDF
A Dialogue System for Coherent Reasoning with Inconsistent Knowledge Bases
11
作者 Silvio do Lago Pereira Luiz Felipe Zarco dos Santos Lucio Nunes de Lira 《Journal of Computer and Communications》 2015年第8期11-19,共9页
Traditionally, the AI community assumes that a knowledge base must be consistent. Despite that, there are many applications where, due to the existence of rules with exceptions, inconsistent knowledge must be consider... Traditionally, the AI community assumes that a knowledge base must be consistent. Despite that, there are many applications where, due to the existence of rules with exceptions, inconsistent knowledge must be considered. One way of restoring consistency is to withdraw conflicting rules;however, this will destroy part of the knowledge. Indeed, a better alternative would be to give precedence to exceptions. This paper proposes a dialogue system for coherent reasoning with inconsistent knowledge, which resolves conflicts by using precedence relations of three kinds: explicit precedence relation, which is synthesized from precedence rules;implicit precedence relation, which is synthesized from defeasible rules;mixed precedence relation, which is synthesized by combining explicit and implicit precedence relations. 展开更多
关键词 Defeasible reasoning Inconsistent knowledge Precedence RELATION DIALOGUE SYSTEM
下载PDF
Knowledge Representation and Fuzzy Reasoning of an Agricultural Expert System
12
作者 吴顺祥 倪子伟 李茂青 《Journal of Southwest Jiaotong University(English Edition)》 2002年第2期185-193,共9页
The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert ... The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert system and artificial intelligence, an in-depth analysis and summary are made of the knowledge features of die agricultural multimedia expert system and data models involved. According to the practical problems in agricultural field, the architectures and functions of the system are designed, and some design ideas about the hybrid knowledge representation and fuzzy reasoning are proposed. 展开更多
关键词 agricultural expert system knowledge representation fuzzy reasoning
下载PDF
A Knowledge-reuse Based Intelligent Reasoning Model for Worsted Process Optimization
13
作者 吕志军 项前 +1 位作者 殷祥刚 杨建国 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期4-7,共4页
The textile process planning is a knowledge reuse process in nature, which depends on the expert’s knowledge and experience. It seems to be very difficult to build up an integral mathematical model to optimize hundre... The textile process planning is a knowledge reuse process in nature, which depends on the expert’s knowledge and experience. It seems to be very difficult to build up an integral mathematical model to optimize hundreds of the processing parameters. In fact, the existing process cases which were recorded to ensure the ability to trace production steps can also be used to optimize the process itself. This paper presents a novel knowledge-reuse based hybrid intelligent reasoning model (HIRM) for worsted process optimization. The model architecture and reasoning mechanism are respectively described. An applied case with HIRM is given to demonstrate that the best process decision can be made, and important processing parameters such as for raw material optimized. 展开更多
关键词 knowledge reuse hybrid intelligent reasoning model CBR ANN wool textile process
下载PDF
"Intelligent" Knowledge Reuse for Complex Logistics Projects: An Application of Ontology-Driven and Case-Based Reasoning
14
作者 Stephan Zelewski Martin Kowalski Daniel Bergenrodt 《Journal of Control Science and Engineering》 2013年第1期23-37,共15页
The application potential of ontology-driven and CBR (case-based reasoning) is demonstrated for the business knowledge management particularly with respect to the reuse of knowledge of experience concerning logistic... The application potential of ontology-driven and CBR (case-based reasoning) is demonstrated for the business knowledge management particularly with respect to the reuse of knowledge of experience concerning logistics projects. The relevance of poorly structured, qualitative and especially in natural language represented knowledge is outlined for purposes of knowledge management, particularly with respect to the management of project-related knowledge. It is elucidated how this kind of knowledge can be preprocessed and reused with the support of a computer. At first, the technique of CBR is outlined in its basic fundamentals. Thereupon, it will be shown how the technique of ontologies can be used for the computer-supported processing of knowledge represented in natural language and integrated in computer-assisted CBR systems. A simple application example illustrates how ontology-driven and CBR can be used in practice within the reuse of project-related knowledge. Finally, it will be addressed which further need for research exists in principle. 展开更多
关键词 Case-based reasoning knowledge management knowledge of experience knowledge reuse logistics projects ontologies project management.
下载PDF
Research on and implementation of a knowledge-reasoning based evaluation support system
15
作者 JIANG Hua, GAO Guo-an (Advanced Manufacturing Technology Center, Harbin Institute of Technology, Harbin 150001, China) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第S1期101-103,共3页
An evaluation support system involving complicated decision making problems during engineering design of products is introduced by first describng and modeling complicated decision making problems, and then constructi... An evaluation support system involving complicated decision making problems during engineering design of products is introduced by first describng and modeling complicated decision making problems, and then constructing and describing the architecture and functional structure of an evaluation support system, based on knowledge-based reasoning. Knowledge contains important experience of field-expert and can be classified and stored in knowledge bases, and therefore, the system suggests information-processing tools based on information resources including data knowledge bases and methods bases, which can be used to evaluate the designs against the multi-criteria decision framework thereby providing decision-makers with rational and scientific information. 展开更多
关键词 knowledge-BASED reasoning MULTI-CRITERIA DECISION EVALUATION support system
下载PDF
基于知识图谱多跳推理的中文矿物知识问答方法与系统 被引量:1
16
作者 季晓慧 董雨航 +3 位作者 杨中基 杨眉 何明跃 王玉柱 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期37-46,共10页
已有相关矿物数据库用于存储和查询相关矿物知识,常用的搜索引擎也可以对矿物知识进行查询,但无法回答用自然语言进行提问的矿物问题,查询返回的答案需要进一步筛选。亦有基于知识图谱进行矿物知识问答的相关研究,但只能回答涉及知识图... 已有相关矿物数据库用于存储和查询相关矿物知识,常用的搜索引擎也可以对矿物知识进行查询,但无法回答用自然语言进行提问的矿物问题,查询返回的答案需要进一步筛选。亦有基于知识图谱进行矿物知识问答的相关研究,但只能回答涉及知识图谱中一个三元组的简单问题,无法回答涉及多个三元组的多跳复杂问题。为此,本文提出基于知识图谱多跳推理的矿物复杂知识问答方法,采用ComplEx模型将矿物实体、关系和问句表示为复数向量,以更好地获取相互之间的语义及推理关系。输入矿物问句后,通过Bert-LSTM-CRF获取其中心词,采用基于编辑距离及分词的方法获得中心词的候选实体集合,然后采用全连接网络确定最相关的实体作为推理起点,与矿物问句拼接后通过全连接网络获得当前跳的最相关关系。根据当前跳的起始实体及最相关关系,在矿物知识图谱中获得另一实体作为下一跳的推理起点,并将下一跳的问句更新为原问句,与当前跳最相关关系拼接,以将当前跳的推理信息带入到下一跳推理中,直到获得的最相关推理关系为预定义的结束标识符,推理结束,返回最后一跳的实体为答案,并给出推理路径。采用Python语言,在Tensorflow框架下实现了本文提出的矿物复杂知识问答并与相关模型进行对比,证明了本文方法的有效性。采用前后端分离架构,使用RESTful API、React、Ajax、echarts和Flask等框架和技术,开发了基于知识图谱多跳推理的矿物复杂知识问答系统,为矿物知识获取及相关地质研究提供了平台和工具。 展开更多
关键词 矿物 问答系统 知识图谱 多跳推理
下载PDF
融合知识图谱和案例推理的燃气应急辅助决策研究 被引量:1
17
作者 胡玉玲 万雨瑞 +1 位作者 李紫旋 齐子琛 《消防科学与技术》 CAS 北大核心 2024年第2期143-148,共6页
燃气事故发生时,应急处置人员基于文本资料查询应急处置方案难以满足处置科学性与快速性的需求。为此,提出了一种融合知识图谱和案例推理的燃气应急辅助决策方法。将已有燃气事故案例文本资料以知识图谱的形式存储与表示,利用案例推理... 燃气事故发生时,应急处置人员基于文本资料查询应急处置方案难以满足处置科学性与快速性的需求。为此,提出了一种融合知识图谱和案例推理的燃气应急辅助决策方法。将已有燃气事故案例文本资料以知识图谱的形式存储与表示,利用案例推理的属性相似度与关系相似度加权计算方法,根据事故目标案例与源案例的综合相似度,检索出最佳相似源案例作为现场处置人员应急处置决策的重要参考,并将新的案例与处置措施存储于燃气应急处置知识图谱库中,实现处置措施的知识更新。通过案例相似度权重分配、属性权重分配、属性相似度方法选取,以及案例验证等,验证了本文方法的合理性与有效性。 展开更多
关键词 燃气事故 知识图谱 案例推理 辅助决策
下载PDF
基于知识图谱的冬奥赛事气象服务文本生成方法研究
18
作者 丰德恩 张雪英 +4 位作者 唐卫 王益鹏 王慕华 渠寒花 李敏 《科学技术与工程》 北大核心 2024年第16期6600-6609,共10页
气象服务文本是为赛事顺利举行及赛事期间的各项活动提供必要的气象保障,是组委会、裁判、各代表队的工作人员获取气象信息开展相关工作的载体。现有气象文本生产需要人工编写审核,效率不高。相比之下,全自动文本生成更加依赖于模板和... 气象服务文本是为赛事顺利举行及赛事期间的各项活动提供必要的气象保障,是组委会、裁判、各代表队的工作人员获取气象信息开展相关工作的载体。现有气象文本生产需要人工编写审核,效率不高。相比之下,全自动文本生成更加依赖于模板和固定的形式。针对以上问题,结合自然语言处理技术提出基于知识图谱的冬奥赛事气象服务文本生成方法。重点从历史赛事气象服务文本中进行内容分析和特征提取,利用气象数据和历史赛事信息构建高山滑雪赛事知识图谱。该方法根据实时气象数据和文稿模板生成天气描述文本,然后基于知识图谱查询推理技术得到赛事影响结果并生成相应文本。实验结果表明:气象服务文本的自动生成结果具有较好的准确性和可读性,有助于冬奥赛事的顺利推进,该文本生成方法面向特定领域也具有较好的应用前景。 展开更多
关键词 知识图谱 文本生成 气象服务 冬奥赛事 知识推理
下载PDF
基于时序知识推理的时序知识图谱补全方法
19
作者 崔良中 任浩源 吕晓 《海军工程大学学报》 CAS 北大核心 2024年第2期87-92,106,共7页
基于知识推理的知识图谱补全技术研究在静态图谱上已经获得了较为明显的效果,但其在处理与时间相关的事件上仍存在着不足,而基于时序推理的知识图谱补全方法更加贴合真实事件,有较高的研究价值。然而,现有的时序知识图谱补全技术在处理... 基于知识推理的知识图谱补全技术研究在静态图谱上已经获得了较为明显的效果,但其在处理与时间相关的事件上仍存在着不足,而基于时序推理的知识图谱补全方法更加贴合真实事件,有较高的研究价值。然而,现有的时序知识图谱补全技术在处理节点信息和全局信息上存在局限性问题。因此,提出了一种基于注意力聚合邻居信息并使用双向LSTM处理时间信息的改进方法。首先,通过推理预测的方式补全时序知识图谱中缺失的信息,并在推理过程中生成推理路径图来解决由神经网络所带来的不可解释性问题;然后,使用4种不同时间跨度的公开数据集进行了实验并与主流方法进行了比较。实验结果表明:所提方法在R mr、h@1和h@10这3个指标上是优于现有方法的。 展开更多
关键词 时序知识图谱 知识图谱补全 知识推理 注意力机制 图神经网络
下载PDF
融合知识推理与相似度检索的民众诉求大模型构建与应用
20
作者 刘昕 高会泉 +3 位作者 邵长恒 陈子良 卢文娟 杨会如 《计算机科学与探索》 CSCD 北大核心 2024年第11期2940-2953,共14页
高效回复民众诉求是实现智能化管理、提升民众满意度的必要措施,将智能问答应用于民众诉求能有效节约人力和时间资源。然而,智能问答中基于规则和检索的模型依赖预设知识,当诉求超出预设知识范围时无法提供有效回复,在处理多轮对话时也... 高效回复民众诉求是实现智能化管理、提升民众满意度的必要措施,将智能问答应用于民众诉求能有效节约人力和时间资源。然而,智能问答中基于规则和检索的模型依赖预设知识,当诉求超出预设知识范围时无法提供有效回复,在处理多轮对话时也无法保持对话连贯性。现有的大语言模型可以和用户流畅对话,但通用大语言模型缺乏诉求领域知识。由于训练数据中问答对的信息没有覆盖回答用户问题所需要的知识,导致通用大语言模型生成错误回复或答非所问,产生幻觉。针对上述问题,构建了面向民众诉求领域的智能问答大语言模型(PC-LLM)。设计基于BERT-BiLSTM-CRF的实体关系抽取模型获得诉求工单中实体及其关系,进而构建诉求知识图谱,使用BERT模型对诉求工单向量化并构建诉求工单向量索引库;回复生成阶段,抽取用户诉求的实体和关系,在诉求知识图谱中通过实体链接进行知识推理,获取潜在关系提示,同时在诉求工单向量索引库内对诉求进行快速检索,获取相似诉求并构建相似诉求提示;将潜在关系提示、相似诉求提示与用户诉求融合形成综合提示,引导大语言模型生成准确的回复。实验分析显示,该大语言模型在诉求数据集中的表现明显优于ChatGPT4o、文心一言、通义千问等大语言模型。 展开更多
关键词 大语言模型 知识推理 相似度检索 民众诉求 知识图谱
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部